
Vol. 28 no. 21 2012, pages 2732–2737
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts482

Sequence analysis Advance Access publication September 1, 2012

Rainbow: an integrated tool for efficient clustering and

assembling RAD-seq reads
Zechen Chong1,2,y, Jue Ruan1,y,* and Chung-I. Wu1,3,*
1Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of
Sciences, Beijing 100029, People’s Republic of China, 2Graduate University of Chinese Academy of Sciences,
Beijing 100049, People’s Republic of China and 3Department of Ecology and Evolution, University of Chicago,
Chicago, IL 60637, USA

Associate Editor: Michael Brudno

ABSTRACT

Motivation: The innovation of restriction-site associated DNA sequen-

cing (RAD-seq) method takes full advantage of next-generation

sequencing technology. By clustering paired-end short reads into

groups with their own unique tags, RAD-seq assembly problem is

divided into subproblems. Fast and accurately clustering and assem-

bling millions of RAD-seq reads with sequencing errors, different levels

of heterozygosity and repetitive sequences is a challenging question.

Results: Rainbow is developed to provide an ultra-fast and memory-

efficient solution to clustering and assembling short reads produced

by RAD-seq. First, Rainbow clusters reads using a spaced seed

method. Then, Rainbow implements a heterozygote calling like strat-

egy to divide potential groups into haplotypes in a top–down manner.

And along a guided tree, it iteratively merges sibling leaves in a

bottom–up manner if they are similar enough. Here, the similarity is

defined by comparing the 2nd reads of a RAD segment. This approach

tries to collapse heterozygote while discriminate repetitive sequences.

At last, Rainbow uses a greedy algorithm to locally assemble merged

reads into contigs. Rainbow not only outputs the optimal but also

suboptimal assembly results. Based on simulation and a real guppy

RAD-seq data, we show that Rainbow is more competent than the

other tools in dealing with RAD-seq data.

Availability: Source code in C, Rainbow is freely available at http://

sourceforge.net/projects/bio-rainbow/files/

Contact: ruanjue@gmail.com

Received on February 29, 2012; revised on July 3, 2012; accepted on

July 26, 2012

1 INTRODUCTION

Genetic markers are polymorphic DNA sequences distributed

along the chromosomes. They are important for studying

population genetics, molecular evolution and inherited diseases.

Traditionally, genetic markers include restriction fragment

length polymorphisms, simple sequence length polymorphisms,

amplified fragment length polymorphisms, microsatellite

polymorphisms, single-nucleotide polymorphisms (SNPs), short

tandem repeats, etc. (http://en.wikipedia.org/wiki/Genetic_

marker). The development of these genetic markers is usually

a costly, laborious and time-consuming work and could not

easily be parallelized (Davey et al., 2011). The advent of

next-generation sequencing (NGS) technology enables

sequencing many millions of reads with plummeting cost.

Methods for discovering and genotyping genetic markers

based on NGS are rapidly springing up. These include

reduced-representation libraries, complexity reduction of poly-

morphic sequences (CRoPS) and restriction site associated

DNA sequencing (RAD-seq); for a good review of these meth-

ods, see Davey et al. (2011). They are very useful for population

genetic/genomic studies, especially when the reference genomes

are unknown.
RAD-seq could generate a genome-wide density of genetic

markers, suggesting a broader application than the other meth-

ods. RAD method was initially invented by Michael Miller

(Lewis et al., 2007; Miller et al., 2007a, b) using microarrays.

Then, high-throughput RAD-seq was developed as an efficient

method to identify genetic markers (Baird et al., 2008; Davey and

Blaxter, 2011). RAD-seq has been successfully used to discovery

SNPs and study adaptive evolution in the stickback (Baird et al.,

2008; Hohenlohe et al., 2010), to resolve genetic structure and

direction of evolution in the pitcher plant mosquitoes (Emerson

et al., 2010), to infer phylogenies (Rubin et al., 2012) and to study

interesting traits of butterfly (The Heliconius Genome

Consortium, 2012).

As illustrated in Figure 1, the protocol of RAD-seq can be

summarized as first digesting the genomic DNAs using restric-

tion enzymes (REs), then the digested restriction fragments are

randomly sheared into staggered sequences and sizes suitable for

sequencing, e.g. on Illumina Genome Analyzer platform, are

selected and amplified using PCR and last by sequencing the

ends of selected segments, RAD-seq data are ready for down-

stream analysis (Baird et al., 2008). The sequenced ends near the

restriction site are called RAD tags or ‘Tagged’ reads and

the other ends are ‘2nd’ ends. At a particular restriction site,

the Tagged reads contain identical information. Thus, by group-

ing the RAD Tagged reads and local assembling of the corres-

ponding ends (2nd reads), contiguous sequences of �600 bp

(limited by the insert size of library of the sequencing platform)

that represent parts of the genome are generated. Moreover, the

Tagged reads can be barcoded, enabling pooled individuals are

sequenced in a single reaction. For examples, Etter et al. (2011)

*To whom correspondence should be addressed.
yThe authors wish it to be known that, in their opinion, the first two
authors should be regarded as joint First Authors.

2732 � The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

 at IN
IST

-C
N

R
S on M

arch 4, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://sourceforge.net/projects/bio-rainbow/files/
http://sourceforge.net/projects/bio-rainbow/files/
http://en.wikipedia.org/wiki/Genetic_marker
http://en.wikipedia.org/wiki/Genetic_marker
http://bioinformatics.oxfordjournals.org/


and Willing et al. (2011) used an enzyme to digest the genomic

DNAs of stickleback and guppy, and by locally assembling RAD

tags, they tried to identify SNPs and define putative haplotypes

in populations.
Although these methods show potential application for local

assembly and downstream population genomic and molecular

evolution analysis, it lacks an efficient and integrated tool to

fulfill the prerequisite clustering the identical Tagged reads and

local assembly work. We show here that clustering is the most

critical and challenging problem, in that the number of reads to

be clustered is huge and they may contain sequencing errors.

In addition, the levels of heterozygosity and/or repetitive

sequences may be high. A direct hashing method (Hiatt et al.,

2010) could quickly group the Tagged reads but cannot tolerate

the inherent sequencing errors. Pairwise alignment for all short

reads (Willing et al., 2011) could overcome this weakness, but the

cost of computation is extremely high.
To avoid the cost of pairwise alignments, heuristic methods

that filter out unnecessary comparison of distant sequences are

introduced. These methods include CD-HIT (Li and Godzik,

2006), UCLUST (Edgar, 2010) and DNAclust (Ghodsi et al.,

2011). All these tools employ a similar k-mer based method,

i.e. the sequences are represented as a table containing the

number of the occurrence of all substrings of length k, and in-

sufficient k-mer number between two sequences will not be com-

pared (Li and Godzik, 2006; Edgar, 2010; Ghodsi et al., 2011).

They are developed for general clustering analysis, but may not

be well suitable for NGS data. Recently, SEED (Bao et al., 2011)

used a block spaced seed approach to fast clustering NGS reads

while tolerating up to three mismatches. It demonstrated the

potential usefulness of spaced seed method for clustering huge

amounts of next-generation short reads. Another set of algo-

rithms such as Vmatch (Abouelhoda et al., 2004) and BWA

(Li and Durbin, 2009) using suffix array to index sequences

first, and by backtracking in the indexed structure, similarity

between reads can be obtained. Shimizu and Tsuda (2011)

developed an exact algorithm SlideSort, which used a recursive

pattern growth method to find chains of k-mers and arbitrary

edit distance could be calculated.
However, these methods may not solve the RAD-seq cluster-

ing problem properly. First, the customized similarity threshold

is subtle. A higher level of mismatches could collapse too many

similar sequences into one cluster, which could cause wrong as-

sembly and will overestimate the diversity of the species. A lower

level of mismatches splits one cluster into many smaller ones,

which will generate redundant contigs or cannot be correctly

assembled because of too few reads could be used. One goal in

RAD-seq is to collapse heterozygote while distinguish repeats.

Second, these methods can use the information of only the

Tagged reads, while the 2nd ends are deserted. The Tagged

reads usually consist of barcode, RE site and the RAD tag.

Barcodes and RE sites and/or low-quality sequence at the tail

must be removed before clustering. Although NGS reads are

evolving longer and longer, the total length for clustering is lim-

ited. Given the paired-end reads of RAD-seq, should we use both

of the ends, which indeed uses longer sequence information.

Third, they are either not time efficient or not space efficient

and combining with other tools to proceed subsequent analysis

might be tough for biologists who are new to bioinformatics.
To achieve these goals, we demonstrate a package called

Rainbow, which uses a spaced seed hashing method for primary

clustering, a heterozygote calling strategy for further dividing

clusters, a bottom–up merging module using paired-end infor-

mation of RAD-seq and a greedy assembly method for local

assembly all at one time. Rainbow can quickly and accurately

cluster and assemble the Tagged reads and their 2nd ends with a

low footprint of memory.

2 METHODS

2.1 Overview of Rainbow algorithms

The aim of Rainbow is to cluster RAD paired reads into groups, which

should come from its unique location in the genome and locally assemble

clustered reads and their paired 2nd ends into contigs representing cor-

responding genomic DNA segments. The implementation of Rainbow

mainly consists of the following steps:

(a) Index all Tagged reads using spaced seeds.

(b) Cluster all relative Tagged reads having no more than a given

number of mismatches with any other read into one group.

(c) Recursively divide clusters from the previous step until the minor

bases of all sites in the cluster are likely to be sequencing errors.

(d) Merge similar clusters (come from the same locus) using paired

ends along the guided tree generated by Step (c) in a bottom–up

manner.

(e) Assemble the final divided reads and their 2nd partners into con-

tigs using a greedy assembly method.

2.2 Spaced seed hash indexing strategy

First, we index all Tagged reads using spaced seed hash tables. The

spaced seed is a non-contiguous seed template for hash indexing, intro-

duced by Ma et al. (2002). For example, a template ‘1011011’ indicates

that all bases at ‘1’s are indexed, while at ‘0’s are not. The number of ‘1’s

Fig. 1. An illustration of RAD-seq method. Genomic DNAs are digested

using at least one enzyme and then randomly sheared into diverse insert

sizes. Thus, sequencing the ends of these sequences could generate the

‘Tagged’ reads with same content (near the enzyme site) and the 2nd

reads. By grouping the ‘Tagged’ reads and assembling 2nd reads, a

local contiguous sequence (contig) is generated

2733

An integrated tool for efficient clustering and assembling RAD-seq reads

 at IN
IST

-C
N

R
S on M

arch 4, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


in the template is called ‘weight’. The use of spaced seeds can significantly

increase sensitivity without sacrificing speed (Ma et al., 2002).

In this article, we employ a hash indexing procedure like Eland

(A.J. Cox, unpublished results), MAQ (Li et al., 2008) and SOAP

(Li et al., 2008). For example, we can index the first 32bp of each read

using six templates (see Figure 2). Using these templates, we are guaran-

teed to find any pair of reads within two mismatches in their first 32 bp.

In Rainbow, we used two sets of spaced seed templates that guarantee to

find two or five mismatches between a pair of reads to deal with low

heterozygous genomes and normal or high heterozygous genomes,

respectively.

2.3 Primary clustering algorithm

The purpose of primary clustering step is to cluster reads indexed in

previous step into groups. In principle, we try to put all connective

reads in one group. Here, the connectivity is defined as two reads have

no more than a certain number of mismatches. Thus, the primary clus-

tering is guaranteed to group all potential ‘true’ clusters correctly.

To reduce memory, we iteratively process each template instead of

loading all templates at once. For each template, we encode each read

at position ‘1’s of template into integers. The reads with the same encoded

integer are grouped into a list. For the reads in the list, all pairwise

alignments are executed without gaps. During alignment, a Hamming

distance is calculated. Two reads within a maximum distance are grouped

as one cluster.

This sort of clustering may overrepresent the true clusters. For ex-

ample, given a maximum number of mismatches, m, if read A and read

B have mmismatches and read A and read C also have m mismatches, A,

B and C will be clustered together, but we cannot conclude that read B

and read C are within m mismatches. So we introduced the dividing

procedure.

2.4 Top–down dividing clusters

The primary clusters might mix reads from repeats and heterozygous

alleles together. The dividing module is introduced to distinguish sequen-

cing errors from heterozygote or variants between repetitive sequences.

The dividing procedure used in Rainbow resembles heterozygote call-

ing. For each primary cluster, reads are piled up. We scan across the

entire reads. For every position of the reads, we calculate the count of

minor base K and its frequency F. We recursively divide the cluster at the

most significant site with the largest number of K until K and F are lower

than the minimum requirement. Minor bases still present in final clusters

are considered as sequencing errors. A guided tree is generated during

dividing to record the relationship of final divided clusters.

The dividing procedure could generate either true clusters or split clus-

ters with separated heterozygous sites. In other words, each cluster may

represent a haplotype.

2.5 Bottom–up merging process

In RAD-seq application, heterozygote should usually be collapsed to

define genetic markers. Besides, repetitive sequences should be as

distinguishable from each other as possible. Because collapsed repeats

could overestimate the diversity of the population.

To collapse heterozygote as well as to discriminate repetitive sequences

as far as possible, we merge potential heterozygous clusters in a bottom–

up manner.

Indeed, the recursive dividing procedure has generated a guided tree.

The leaves of the tree are the finally divided clusters. If two leaves are

brothers and are similar enough, then we merge the two leaves to generate

a new leaf at their parent node and delete the two leaves.

Since the Tagged reads usually contain barcode information and

restriction site sequences, the available sequences may not unambiguously

distinguish heterozygote from repetitive sequences. To take full advan-

tage of RAD-seq property, we use the 2nd reads to define the similarity

between two brother leaves. Comparing 2nd reads is in deed comparing

much longer segments. The longer the sequence, the better it could dis-

tinguish from each other.

In Rainbow, when comparing the similarity between two leaves, we

index the leaf with relative larger number of reads using a sliding k-mer

into a hash table and then using the leaf with smaller number of reads and

splitting the reads into sliding k-mers to query against the hash table. If a

threshold number of reads hit the hash table, we regard the two leaves as

similar and merge them.

2.6 Local assembly of final clusters

Rainbow employs a greedy algorithm to fulfill the assembly step. Both

the Tagged reads and the 2nd reads are pooled. Then, all pairwise align-

ments are performed. This computation is feasible, since the number of

reads in a local assembly is small. Next, given a threshold of overlap

length and overlap similarity, two reads or contigs with the largest over-

lap are chosen and merged into one consensus sequence. This process is

repeated until no more reads can be merged. Rainbow reports not only

the optimal contig but also suboptimal ones.

2.7 Parameter setting for evaluated clustering softwares

To evaluate the performance of Rainbow, we compared Rainbow with

several state-of-the-art tools. For clustering comparison, we simulated

three levels of heterozygosity using the ‘Human’ genome reference. We

added DNAclust, SEED, SlideSort and Vmatch for reference. The par-

ameters are listed in Table 1.

3 RESULTS

3.1 Rainbow performance on simulation data

To evaluate the performance of Rainbow, we simulated

three datasets with three levels of heterozygosity (Table 2) on

Human genome reference (hg19) digested with EcoRI

(GAATTC). There are 778 882 RAD sites recognized by

EcoRI on the Human genome. By using a modified version of

‘wgsim’ (Li et al., 2009), paired-end read sequences of length 100

bp were simulated from wide-range insert size libraries initiated

from 120bp and elongation of 10 steps (each step extends 50 bp).

For each step, we simulated a mean depth of 5� of paired-end

reads. And a 0.5% sequencing error rate was randomly intro-

duced. Thus, an expected coverage of 482 906 840bp or a repre-

sentative of RAD-seq library cover 15.6% of the Human genome

reference is simulated. All the simulation and subsequent analysis

were performed on an X86 64bit linux platform with 32

2.13GHz CPUs and 512 GB main memory. But only one

CPU core is used when evaluation.

Fig. 2. The illustration of spaced seed strategy. Six templates with a seed

length of 32 and a weight of 16 are used. This combination could ensure

full search of reads within two mismatches in the 32bp

2734

Z.Chong et al.

 at IN
IST

-C
N

R
S on M

arch 4, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


To test the performance of Rainbow, we separated it into two
parts: reads clustering and assembly of clustered reads. The clus-

tering step is critical for subsequent assembly procedure. Hence,

we first evaluated the clustering performance.

We compared Rainbow with DNAclust (Ghodsi et al., 2011),
SEED (Bao et al., 2011), SlideSort (Shimizu and Tsuda, 2011)

and Vmatch (Abouelhoda et al., 2004) to evaluate their perform-

ance for clustering on simulation data. The parameters of these

programs are listed in Table 1. Similar to the gauge of SEED

(Bao et al., 2011), we recorded the statistics of the number of

clusters, the number of clusters identical with true ones, Jaccard

index, false discovery rate (FDR), sensitivity and computing time

and memory consumption. For two Clusters C1 and C2, the
Jaccard index is defined as jC1\C2j/jC1[C2j. Its value lies

between 0 and 1, and the higher value of Jaccard index indicates

the better similarity of the two clusters.
From Table 2, we can see that at low heterozygosity, all pro-

grams show similar level of Jaccard Index except DNAclust. But

as the heterozygosity increases, Rainbow outperforms all the

other programs. Besides, Rainbow almost shows exclusively

the highest sensitivity and the lowest FDR, indicating that

Rainbow performs well and robustly in dealing with different

heterozygous conditions. Meanwhile, on efficiency, Rainbow is

always faster and has a much smaller memory footprint than the

other tools. The less memory occupation of Rainbow makes

possible working on a desktop dealing with RAD-seq data for

biologists.
To further evaluate Rainbow’s performance for clustering, we

locally assembled the reads in each clusters using the Rainbow

assembler ‘rbasm’. To compare Rainbow with the other tools

fairly, we ran rbasm on the clustering results of each program.

The N50 (the largest number above which the combined length is

at least 50% of the total length of all contigs) and N90 of

assembled contigs are quite consistent from 580 to 615bp

among these programs (data not shown), indicating that in

most cases these programs could cluster reads accurately and

rbasm performed well. We then selected the optimal (longest)

assembled contigs and mapped the contigs to the reference

using ‘BWASW’ (Li and Durbin, 2010). The alignments were

processed using SAMtools (Li et al., 2009). Rainbow covers

more genomic regions than the other tools, except DNAclust.

It is interesting that although DNAclust cannot exceed the other

programs in statistics such as sensitivity, Jaccard Index, it could

cover more sites of the genome. From the statistics, we can see

that DNAclust tends to cluster more groups with fewer reads.

But in reality, this may cause redundant segments, since the simi-

larity threshold is strict. When the depth is low or unevenly

distributed, the clustered reads may not be assembled into

better contigs.

Table 2. Comparison of clustering programs on simulation data (778 882 clusters and expected coverage: 482906 840bp)

Heterozygosity Program No. of

clusters

No. of

clusters identical

with true ones

Jaccard

Index

FDR Sensitivity Optimal

contig cov

Optimal and

suboptimal

contig cov

Time (s) Memory

(MB)

0.001 Rainbowa 762 171 743 864 0.966 0.039 0.976 422 738 035 422 740 419 1453.0 2998.6

DNAclust 829 961 237 920 0.819 0.059 0.884 425198 931 426761 646 180 245.4 36 918.7

SEED 762 104 750 569 0.969 0.041 0.976 420 845 207 422 436 778 1955.3 36 901.3

SlideSort 753 454 750 519 0.968 0.042 0.974 419517 465 420736 926 5018.6 9301.1

vmatch 766 414 751 443 0.965 0.034 0.974 422 133 498 423170 445 7421.6 42 194.7

0.010 Rainbow 770 800 736 691 0.953 0.043 0.972 423389 515 423395 671 2282.8 4134.2

DNAclust 977 714 475 382 0.672 0.141 0.852 425 917 530 427831 938 120 773.1 39 699.9

SEED 772 433 723 702 0.941 0.053 0.964 419373 406 421269 473 1990.9 37 161.0

SlideSort 767 922 733 347 0.939 0.058 0.961 417 533 066 418 978 003 6617.3 9366.6

vmatch 818 189 693 952 0.869 0.075 0.939 420296 809 421 693 200 21 441.8 42 191.3

0.020 Rainbow 784 585 728 876 0.937 0.044 0.968 424 769 039 424773 322 2358.3 3002.5

DNAclust 871 718 614 306 0.801 0.093 0.914 423467 852 425 552 482 170 990.2 40 760.8

SEED 855 889 626 431 0.815 0.091 0.919 420 936 857 423051 365 2292.0 37 337.2

SlideSort 788 787 707 516 0.895 0.079 0.943 416080 003 417 817 238 9376.1 9398.6

vmatch 860 882 646 658 0.797 0.107 0.908 418 962 111 420661 755 51 390.8 21 993.7

aThe time consumption for rainbow is the sum of clustering, dividing and merging procedures.

Table 1. Tools and parameter used when benchmarking clustering

Dataset programs Parameter used (not listed using default)

NO.1 Rainbow cluster -L, merge -p 0.95 -N500

DNAclust -s 0.98

SEED –mismatch 2 –shift 0 –fast

SlideSort -d 2

Vmatch -d -l 100 -dbcluster 100 100 -h 1

NO.2 Rainbow cluster -m6, merge -p 0.85 -N 500

DNAclust -s 0.97

SEED –mismatch 3 –shift 0 –fast

SlideSort -d 3

Vmatch -d -l 100 -dbcluster 100 100 -h 2

NO.3 Rainbow merge -p 0.85 -N 500

DNAclust -s 0.96

SEED –mismatch 3 –shift 0 –fast

SlideSort -d 4

Vmatch -d -l 100 -dbcluster 100 100 -h 3

2735

An integrated tool for efficient clustering and assembling RAD-seq reads

 at IN
IST

-C
N

R
S on M

arch 4, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


Rainbow has introduced a top–down dividing module and

bottom–up merging process, which tries to collapse heterozygote

and distinguish repetitive sequences. All the other tools lack this

capability and they tend to collapse both heterozygous and re-

petitive sequences within the maximum mismatch threshold. If

reads from two segments are grouped only due to the similarity

of the Tagged reads, then the assembly should resolve the two

segments. To demonstrate this, we not only selected the optimal

contigs but also suboptimal ones. By mapping these contigs to

the reference, we can see from Table 2 that the genomic sites

covered by Rainbow contigs increase only slightly while other

tools increase much more. But even if suboptimal contigs are

chosen, optimal contigs of Rainbow usually cover more regions.

To test the assembly performance of Rainbow, we compared

its assemblies with that of Velvet version 1.1.05 (Zerbino and

Birney, 2008) and LOCASopt (http://ab.inf.uni-tuebingen.de/

software/locas/) based on the final clusters from the Dataset 3,

which has a heterozygosity level of 0.02 and is processed by

Rainbow. The three programs represent state-of-the-art algo-

rithms for de novo assembly, i.e. greedy (Rainbow), overlap-

layout-consensus (LOCASopt) and De Bruijn graph (Velvet).

We selected 3273 clusters as a demonstration. We used

VelvetOptimiser (http://bioinformatics.net.au/software.velvetop-

timiser.shtml) to run Velvet in order to get the best results. We

used the parameter ‘-s 11 -e 31 -f ’-fasta -short input.txt’ -d out-

putdir -v -t 8’ to run VelvetOptimiser. For LOCASopt, we used

the parameter suggested in the article (Willing et al. 2011), i.e.

overlap¼ 21, 23, . . . , 67, k-mer¼ 13, 15, 17 and mismatch

rate¼ 0.05, 0.07, 0.09. After assembling, we selected both opti-

mal contigs and optimal plus suboptimal contigs for comparison.

We recorded the number of assembled contigs, their max and

mean big lengths, N50, N90 and total covered bases. Table 3

implies that Rainbow outperforms Velvet and LOCASopt in

terms of almost all statistics, which indicates that greedy algo-

rithm is suitable for local assembly task in RAD-seq.

3.2 Rainbow performance on real data

We also tested Rainbow performance on real data. Willing et al.

(2011) used RAD-seq assembly method to survey a less complex

part of the guppy genome. They digested the genomes using the

enzyme EcoRI and assembled 200–500bp contigs to further per-

form population genetics analysis in the guppy populations.

They provided a pipeline named RApiD to execute bioinforma-

tical analysis. RApiD consists of several scripts. For the main

clustering step, it calls Vmatch (http://www.vmatch.de) for pair-

wise alignment of RAD tags and then processes the alignment

results to generate clusters. And during the assembling proced-

ure, it calls LOCAS (http://ab.inf.uni-tuebingen.de/software/

locas/) to assemble the second reads.
We downloaded the above data and tested the performance of

Rainbow. We compared Rainbow results with RApiD. We used

the default parameter in Rainbow, while RapiD used a fixed

parameter and a set of parameters trying to obtain the optimal

one suggested in the article. Indeed, we have spent 83.5 h to run

the optimal assembly procedure of the pipeline RApiD and got a

similar result as shown in their article. In contrast, it took only

3.4h for Rainbow to accomplish clustering and de novo assembly

on the same dataset. Here, we filtered the final clusters of

Rainbow with at least 10 reads in each cluster. We summarized

the assembly results as total number of clusters, total number of

contigs, average reads used for a contig, the mean contig size and

the total length of contigs for comparison (see Table 4).
From Table 4, we can see that Rainbow could generate longer

clusters than RapiD. Because the guppy genome is not available,

we could not map the contigs onto the reference. To evaluate the

final assembly results, we adopted the method introduced by

Willing et al. (2011). We downloaded 5223 guppy BAC ends

from NCBI and predicted 910 RAD markers with length

�150bp using EcoRI (GAATTC). We mapped those markers

to the assembly results of Rainbow and RApiD using BLAST

(Altschul et al., 1990). 677 (74.4%) and 657 (72.2%) markers

could match to Rainbow assembled contigs and RApiD refer-

ences, respectively. 576 (85.1%) out of 677 hits for Rainbow and

515 (78.4%) out of 657 hits for RApiD could include the restric-

tion site at one end and have identity over 90%. This indicates

the results of Rainbow are as good as RApiD or even slightly

better. The mean number of reads used to generate a contig in

Rainbow is about 20 reads less than RApiD. We also note that

the number of final contigs is much larger than the number of

clusters for RApiD, but the corresponding numbers in Rainbow

is nearly the same. This suggests that RApiD tended to collapse

more sequences (repetitive sequences) while Rainbow only tried

to collapses heterozygote. These results show that Rainbow is

quite qualified for the analysis of RAD-seq data.

4 DISCUSSION

In this article, we present Rainbow as an efficient and general tool

for RAD-seq short reads clustering and assembling. It could

quickly group and assemble millions of short reads with a small

memory footprint. In addition, it could tolerate a high

Table 3. Comparison of assembly results among Rainbow, Velvet and

LOCASopt

Tool No. of

contigs

Max

(bp)

Mean

(bp)

N50

(bp)

N90

(bp)

covered

bases

RainbowOpt 3273 697 562 603 478 1 840989

RainbowSub 4208 697 471 601 351 1 984010

VelvetOpt 3273 619 520 592 380 1 703253

VelvetSub 4379 619 431 586 270 1 887082

LOCASopt 4115 598 436 552 278 1 793710

Table 4. Comparison of assembly result between Rainbow and RApiD

Method No. of

clusters

No. of

contigs

Reads

used

Mean

(bp)

Sum

(Mb)

Rainbow 313 728 324 909 57.0 375 121.7

RApiD-fixed 291 149 503 748 75.6 286 143.8

RApiD-opt 291 159 334 215 76.8 349 116.6

2736

Z.Chong et al.

 at IN
IST

-C
N

R
S on M

arch 4, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://ab.inf.uni-tuebingen.de/software/locas/
http://ab.inf.uni-tuebingen.de/software/locas/
http://bioinformatics.net.au/software.velvetoptimiser.shtml
http://bioinformatics.net.au/software.velvetoptimiser.shtml
http://www.vmatch.de
http://ab.inf.uni-tuebingen.de/software/locas/
http://ab.inf.uni-tuebingen.de/software/locas/
http://bioinformatics.oxfordjournals.org/


heterozygous genome. In particular, by using the top–down divid-

ing and bottom–up merging procedures, we can collapse hetero-

zygote while distinguish repetitive sequences. We have shown

that it performs well both on simulation data and real data.

RAD-seq is a developing field and intriguing the interests of

more and more people. As the evolution of NGS technology, we

believe RAD-seq will improve a lot and become more important

for biological research.
In the future, we will improve Rainbow in the following

aspects. First, to improve the accuracy of clustering, base quality

will also be incorporated into the dividing procedure. Besides, to

be compatible with more applications, we will add a seed shifting

strategy that SEED proposed to deal with overhanging bases,

which could rescue reads due to irregular cuts. Third, although

RAD-seq is mainly performed on the Illumina Genome

Analyzer, the rapid evolving RAD-seq technology might

spread to other platforms. We will prepare to let Rainbow sup-

port more platforms.

ACKNOWLEDGEMENTS

We are very grateful to Dr Heng Li and Dr Weiwei Zhai for

providing many valuable suggestions on preparing the article.

We would also like to thank the anonymous reviewers for their

useful comments and suggestions for the work.

Funding: The National Nature Science Foundation of China

(31000588).

Conflict of Interest: none declared.

REFERENCES

Abouelhoda,M.I. et al. (2004) Replacing suffix trees with enhanced suffix arrays. J.

Discrete Algorithms, 2, 53–86.

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Baird,N.A. et al. (2008) Rapid SNP discovery and genetic mapping using sequenced

RAD markers. PloS One, 3, e3376.

Bao,E. et al. (2011) SEED: efficient clustering of next-generation sequences.

Bioinformatics, 27, 2502–2509.

Davey,J.W. et al. (2011) Genome-wide genetic marker discovery and genotyping

using next-generation sequencing. Nat. Rev. Genet., 12, 499–510.

Edgar,R.C. (2010) Search and clustering orders of magnitude faster than BLAST.

Bioinformatics, 26, 2460–2461.

Emerson,K.J. et al. (2010) Resolving postglacial phylogeography using high-

throughput sequencing. Proc. Natl. Acad. Sci. USA, 107, 16196–16200.

Etter,P.D. et al. (2011) Local de novo assembly of RAD paired-end contigs using

short sequencing reads. PLoS One, 6, e18561.

Ghodsi,M. et al. (2011) DNACLUST: accurate and efficient clustering of phylo-

genetic marker genes. . BMC Bioinformatics, 12, 271.

Hiatt,J.B. et al. (2010) Parallel, tag-directed assembly of locally derived short

sequence reads. Nat. Methods, 7, 119–122.

Hohenlohe,P.A. et al. (2010) Population genomics of parallel adaptation in three-

spine stickleback using sequenced RAD tags. PLoS Genet., 6, e1000862.

Lewis,Z.A. et al. (2007) High-density detection of restriction-site-associated DNA

markers for rapid mapping of mutated loci in Neurospora. Genetics, 177,

1163–1171.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows–

Wheeler transform. Bioinformatics, 25, 1754–1760.

Li,H. and Durbin,R. (2010) Fast and accurate long-read alignment with Burrows–

Wheeler transform. Bioinformatics, 26, 589–595.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Li,H. et al. (2008) Mapping short DNA sequencing reads and calling variants using

mapping quality scores. Genome Res., 18, 1851–1858.

Li,R. et al. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics,

24, 713–714.

Li,W. and Godzik,A. (2006) CD-HIT: a fast program for clustering and

comparing large sets of protein or nucleotide sequences. Bioinformatics, 22,

1658–1659.

Ma,B. et al. (2002) PatternHunter: faster and more sensitive homology search.

Bioinformatics, 18, 440–445.

Miller,M.R. et al. (2007a) RAD marker microarrays enable rapid mapping of zeb-

rafish mutations. Genome Biol., 8, R105.

Miller,M.R. et al. (2007b) Rapid and cost-effective polymorphism identification

and genotyping using restriction site associated DNA (RAD) markers.

Genome Res., 17, 240–248.

Rubin,B.E. et al. (2012) Inferring phylogenies from RAD sequence data. PloS One,

7, e33394.

Shimizu,K. and Tsuda,K. (2011) SlideSort: all pairs similarity search for short reads.

Bioinformatics, 27, 464–470.

The Heliconius Genome ConsortiumButterfly genome reveals promiscuous

exchange of mimicry adaptations among species. Nature, advanced online

publication.

Willing,E.M. et al. (2011) Paired-end RAD-seq for de novo assembly and marker

design without available reference. Bioinformatics, 27, 2187–2193.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read assem-

bly using de Bruijn graphs. Genome Res., 18, 821–829.

2737

An integrated tool for efficient clustering and assembling RAD-seq reads

 at IN
IST

-C
N

R
S on M

arch 4, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/

