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Abstract
Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual
genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing
using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due
to the moderate costs, manageable data amounts and straightforward interpretation of analysis results. While
whole-exome and, in the near future, whole-genome sequencing are becoming commodities, data analysis still
poses significant challenges and led to the development of a plethora of tools supporting specific parts of the ana-
lysis workflow or providing a complete solution. Here, we surveyed 205 tools for whole-genome/whole-exome
sequencing data analysis supporting five distinct analytical steps: quality assessment, alignment, variant identifica-
tion, variant annotation and visualization.We report an overview of the functionality, features and specific require-
ments of the individual tools. We then selected 32 programs for variant identification, variant annotation and
visualization, which were subjected to hands-on evaluation using four data sets: one set of exome data from two
patients with a rare disease for testing identification of germline mutations, two cancer data sets for testing variant
callers for somatic mutations, copy number variations and structural variations, and one semi-synthetic data set
for testing identification of copy number variations.Our comprehensive survey and evaluation of NGS tools provides
a valuable guideline for human geneticists working on Mendelian disorders, complex diseases and cancers.
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INTRODUCTION
Recent advances in genome sequencing technologies

are rapidly changing the research and routine work of

human geneticists. Due to the brisk decline of costs

per base pair, next-generation sequencing (NGS) is

now affordable even for small- to mid-sized labora-

tories. Whole-genome sequencing and whole-exome

sequencing have proven to be valuable methods for

the discovery of the genetic causes of rare and com-

plex diseases [1]. Although cheaper than Sanger

sequencing, whole-genome sequencing remains ex-

pensive on a grand scale. Over and above, one

sequencing run provides enormous amounts of data

and poses considerable challenges for the analysis and

interpretation. In contrast, whole-exome sequencing

is becoming a popular approach to bridge the gap
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between genome-wide comprehensiveness and

cost-control, by capturing and sequencing the �1%

of the human genome that codes for protein se-

quences [2, 3]. Furthermore, novel, non-optical tech-

nologies [4] are developing fast, and soon devices will

be available that can sequence up to 10 Gbases at a

fraction of the current costs. Thus, it is expected that

by the end of the year 2012 whole-exome sequencing

can be performed at a reagent cost per sample in the

range of 400–500E [5].

Whole-exome sequencing has already been used

for identifying the molecular defects of single gene

disorders [6, 7], for elucidating some genetically het-

erogeneous disorders [8, 9] and for improving the

accuracy of diagnosis of patients [10, 11]. The

amount of both raw and processed data for whole-

exome sequencing is orders of magnitude smaller than

for whole-genome sequencing. Nevertheless, each

sequencing run identifies a wealth of simple nucleo-

tide variations (SNVs), including single-nucleotide

polymorphisms (SNPs) and small insertions and dele-

tions (INDELs). On average, whole-exome sequen-

cing identifies 12 000 variants in coding regions [12],

of which �90% are found in publicly available data-

bases [13]. In comparison,�5 million variants, includ-

ing 144 000 new variants, are reported on average by

whole-genome sequencing [14].

Not surprisingly, initiatives have been started using

whole-exome sequencing to explore all Mendelian

disorders, which will improve the functional anno-

tation of the human genome and will provide new

insights into mechanisms of disease development

[15]. As of to date, OMIM [16], a catalog of

Mendelian disorders, lists >3000 disorders where

the molecular basis has been reported. Still, >3500

disorders are listed where the genetic cause remains

unknown and has yet to be identified [17].

Other main fields of interest for human geneticists

are complex diseases and cancer. For example, the

usage of NGS has led to the identification of driver

mutations for specific types of cancer [18, 19], which

are often reported to be structural or non-coding

[20]. NGS paved the way for the fundamental

understanding of mutated genes in cancer cells, af-

fected pathways, and how these data inform our

models and knowledge of cancer biology [21]. A

recent study with regard to tumor vaccination

showed a proof-of-concept in which somatic muta-

tions are first detected using NGS. Subsequently the

immunogenicity of these mutations is defined, and

finally, mutations are tested for their capability to

elicit T-cell immunogenicity [22]. Thus, tailored

vaccine concepts based on the genome-wide discov-

ery of cancer-specific mutations and individualized

therapy seem technically feasible.

The current bottleneck of whole-genome and

whole-exome sequencing projects is not the sequen-

cing of the DNA itself but lies in the structured way

of data management and the sophisticated computa-

tional analysis of the experimental data [23]. In order

to get meaningful biological results, each step of the

analysis workflow needs to be carefully considered,

and specific tools need to be used for certain experi-

mental setups.

The complete NGS data analysis process is com-

plex, includes multiple analysis steps, is dependent on

a multitude of programs and databases and involves

handling large amounts of heterogeneous data. It is

not surprising that due to the enormous success of

NGS projects, a flood of tools has been created to

support specific parts of the analysis workflow. It is

apparent that the appropriate choice of tools is a

non-trivial task, especially for inexperienced users.

Therefore, a number of review articles were recently

published (e.g. [24–28]) to facilitate the choice of the

most suitable tool for a particular application.

However, these articles review only selected compo-

nents of the NGS data analysis pipeline such as map-

ping and assembly [24], sequence alignments [26],

algorithms for SNP and genotype calling [25] or de-

tection of structural variations (SVs) and copy number

variations (CNVs) [27]. To the best of our know-

ledge, a comprehensive review covering all individual

analysis steps has not been reported yet. Such a review

would be tremendously helpful for researchers plan-

ning a NGS project since it would provide a rich re-

source to guide the assembly of an analytical pipeline

for a particular application or alternatively select a

fully integrated pipeline. In addition, by covering

multiple steps of the workflow it addresses issues

such as data handling and tool compatibility, which

are neglected when only individual components are

reviewed. We therefore initiated this study to survey

existing tools spanning the complete analysis work-

flow and compile a comprehensive list of programs for

variant analysis of NGS data. Additionally, we wanted

to test a particular scenario typical for a human gen-

eticist, i.e. applying tools in the context of mutation

discovery on a Mendelian disorder or on a cancer data

set. This type of hands-on evaluation of NGS soft-

ware using real data sets rather than benchmarking the

performance of a bioinformatics pipeline provides
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additional criteria for making a decision to select the

appropriate tools.

We surveyed 205 tools for whole-genome/

whole-exome sequencing data analysis supporting

five distinct analytical steps (Figure 1): quality assess-

ment, alignment, variant identification, variant anno-

tation and visualization. We report an overview of

the functionality, features and specific requirements

of the individual tools. We then selected 32

programs for variant identification, variant annota-

tion and visualization, which were subjected to

hands-on evaluation using four data sets: one set of

whole-exome data from two patients with a rare

disease for testing identification of germline muta-

tions, two cancer data sets for testing variant callers

for somatic mutations, CNVs and SVs, and one

semi-synthetic data set for testing identification

of CNVs. Commercial tools such as Avadis

NGS (www.avadis-ngs.com), CLC Genomics

Workbench (www.clcbio.com), DNAnexus (dna-

nexus.com), Ingenuity Pathways Analysis (www.

ingenuity.com), NextGENe (www.softgenetics.

com/NextGENe.html), Partek Genomics Suite

(www.partek.com) or SNP and Variation Suite

(www.goldenhelix.com) were not part of this

survey.

The article is structured as follows. We first intro-

duce the main application fields for NGS in human

genetics, namely, Mendelian diseases, i.e. single gene

disorders as a result of a single mutated gene like

cystic fibrosis or sickle cell anemia, complex diseases,

i.e. polygenic diseases associated with the effects of

multiple genes in combination with other factors like

diabetes or hypertension and cancer. Next, we de-

scribe NGS platforms and the NGS data analysis

workflow and review available tools for the distinct

analysis steps. Then we explain the scope and the

method used to evaluate the tools and report

hands-on experience of the selected programs.

Finally, we make general recommendations for tool

selection and prioritization of candidate genes.

APPLICATIONOF
NEXT-GENERATIONGENOME
SEQUENCING IN HUMAN
GENETICS
We considered three common scenarios for human

geneticists using NGS data: (i) identification of causa-

tive genes in Mendelian disorders (germline muta-

tions), (ii) identification of candidate genes in

complex diseases for further functional studies and

(iii) identification of constitutional mutations as

well as driver and passenger genes in cancer (somatic

mutations).

Mendelian disorders
Traditionally, the main approach to elucidate causes

of Mendelian disorders has been positional cloning

based on linkage analysis [29]. The resulting genomic

Figure 1: Basic workflow for whole-exome and
whole-genome sequencing projects. After library prep-
aration, samples are sequenced on a certain platform.
The next steps are quality assessment and read align-
ment against a reference genome, followed by variant
identification. Detected mutations are then annotated
to infer the biological relevance and results can be dis-
played using dedicated tools. The found mutations can
further be prioritized and filtered, followed by valid-
ation of the generated results in the lab.
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interval should normally contain <300 candidate

genes which are further investigated by Sanger

sequencing [13]. This study design is only applicable

for familial diseases where an appropriate sample size

is available [30] and is not suitable for the identifica-

tion of de novo dominant mutations.

Currently, OMIM lists �3500 Mendelian dis-

orders with unknown genetic causes [17]. Whole-

exome sequencing is a powerful tool that has not

only revolutionized comprehensive candidate gene

sequencing in traditional positional cloning studies

but also allowed identification of autosomal recessive

disease genes in single patients from non-

consanguineous families (e.g. [6, 7, 31]) as well as

de novo dominant mutations. As whole-exome

sequencing identifies a vast amount of variants,

sophisticated filtering approaches are needed to

reduce the number of genes for further investigation.

Furthermore, as current capturing methods cannot

evenly capture exonic regions [32], potentially inter-

esting mutations in these regions are possibly

neglected.

Whole-genome sequencing provides a complete

view of the human genome, including point muta-

tions in distant enhancers and other regulatory elem-

ents which have been previously associated with

hereditary diseases [33]. As the cost per sequenced

base will likely drop in the future, whole-genome

sequencing will presumably replace whole-exome

sequencing.

Complex diseases
The genetics of complex phenotypes have been

investigated for decades through association studies

with candidate genes that, based on pathophysio-

logical considerations, were suspected to be involved

in the development of the phenotype [34]. This ap-

proach was severely hampered by relying on some-

times unfounded functional hypotheses as well as by

applying wrong statistical assumptions. An alternative

to this candidate gene approach are genome-wide

association studies (GWASs), which have become

more feasible through the advancement of high-

throughput genotyping technologies. GWASs are

based on the principle of linkage disequilibrium—

the non-random association between alleles at differ-

ent loci—at the population level [35]. The develop-

ment of SNP arrays, which can genotype many

markers in a single assay in conjunction with bio-

banks of either population cohorts or case–control

samples, facilitated the ability to conduct GWAS.

This unbiased survey of many genes and variants ro-

bustly identified associations between 1300 loci and

200 diseases or traits [36].

Genetic studies of complex phenotypes are based

on either ‘common disease–common variant’ or

‘common disease–rare variant’ hypotheses. GWAS

primarily test the ‘common disease–common variant’

hypothesis, where complex phenotypes are the result

of cumulative effects of a large number of common

variants. In contrast, the ‘common disease–rare vari-

ant’ hypothesis posits that multiple rare variants with

large effect sizes are the main determinants of herit-

ability of the disease [34]. The field is now shifting

toward the study of lower frequencies of rare variants

[37], which can only be empowered by NGS and

sophisticated bioinformatics approaches [38].

Defining the genetic basis of complex diseases

using NGS can be performed by the following: (i)

whole-genome, (ii) whole-exome and (iii) targeted

subgenomic sequencing. Whole-genome and

whole-exome sequencing have been successfully uti-

lized to identify the genes responsible for complex

hereditary diseases [39, 40], where whole-genome

sequencing enables testing of both mentioned

hypotheses.

Finally, NGS can also be used to identify trait loci

by re-sequencing candidate genes in a large number

of patients and controls as demonstrated for Type 1

diabetes [41]. This targeted subgenomic sequencing

is likely to be supplanted by whole-exome (or

whole-genome) sequencing in the near future. The

challenge is now to utilize sequencing to enable the

discovery of novel genes that contribute to the stu-

died diseases. Given the vast number of genetic and

non-genetic etiological factors of complex diseases,

the ultimate approach will require exploiting biolo-

gical and clinical data, and integration of additional

data sets including RNA sequencing data, prote-

omics data and metabolomics data.

Somatic mutations
For human geneticists, there is an important distinc-

tion between constitutional and somatic mutations.

Constitutional mutations, which have been inherited

from the parents, are present in all cells of the body

and may increase the susceptibility of an individual to

be diagnosed with cancer [42]. New methods have

led to the identification of novel genetic components

which may improve assessment of cancer predispos-

ition [43]. Indeed multiple cancer susceptibility loci

have been identified, which indicate that there may
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be a significant number of common alleles that con-

tribute to the heritability of a specific cancer.

However, each of these loci confers only a small

contribution to the risk for cancer [44]. For example,

22 common breast cancer susceptibility loci have

been reported which explain only �8% of the dis-

ease’s heritability [45]. For this reason, it is daunting

to transfer these common alleles, which on their own

have only a minor impact on disease risk, into a

clinical test [43]. In contrast, according to the

‘common disease–rare variant’ hypothesis [46], con-

stitutional high-penetrance mutations in specific

genes may cause a high risk of developing particular

types of cancer. Whole-exome sequencing has led to

the identification of high-penetrance mutations in

other genes that are only relevant for a small propor-

tion of families [47].

There is considerable interest in the exploitation

of somatic mutations as a tool used to improve the

detection of disease and, ultimately, to allow indivi-

dualized treatment leading to better outcomes. The

aim is to give patients a drug tailored to the genetic

makeup of their tumor. The most famous example is

the Bcr-Abl tyrosine kinase inhibitor imatinib, which

represents a major therapeutic advance over conven-

tional therapy in patients with Philadelphia chromo-

some positive chronic myelogenous leukemia. Here,

>90% of patients obtained complete hematologic re-

sponse and 70–80% of patients achieved a complete

cytogenetic response [48]. In colorectal cancer, the

paradigms are ‘KRAS’ mutations in exon 2 (codons

12 and 13), which have been established as a predict-

ive marker for treatment with epidermal growth

factor receptor inhibitors [49]. Therefore, it has

become increasingly urgent for the clinical oncolo-

gist to have access to accurate and sensitive methods

for the detection of such predictive biomarkers.

NGSVARIANTANALYSIS
WORKFLOW
NGS platforms
NGS instruments provide higher throughput at an

unprecedented speed by sequencing millions of short

DNA fragments in parallel [50, 51]. Currently, the

three most commonly used platforms are Roche 454

(introduced in 2005), Illumina (launched in 2006)

and ABI SOLiD (followed in 2008). All three plat-

forms sequence DNA by measuring and analyzing

signals, which are emitted during the creation of

the second DNA strand, but differ in how the

second strand is generated.

In order to produce detectable signals, template

DNA is fragmented into small pieces, amplified and

immobilized on a glass slide before sequencing.

Roche 454 implements pyrosequencing, which

measures released pyrophosphates allowing the ana-

lysis of read fragments up to a few hundred base

pairs. Since this technique infers the number of

incorporated nucleotides from the signal’s intensity,

the system experiences problems when homopoly-

mer stretches longer than 8 bp are sequenced [52].

This complicates identification of small insertions and

deletions. Illumina applies a sequencing-by-synthesis

approach where only 1 nt per sequencing cycle is

incorporated using reversible dye terminators.

Thereby, it avoids homopolymer calling problems

at the cost of being capable of sequencing only

shorter fragments. ABI SOLiD analyzes DNA by

ligating fluorescently labeled di-base probes to the

first strand, requiring reading each base twice. Due

to the nature of this approach, identified calls are not

stored in nucleotide but in color space—a property

that needs to be considered in downstream analyses.

Depending on library preparation and sequencing

technology, it is possible to sequence reads that are of

a known chromosomal distance [26]. These so-called

paired-end or mate-pair reads provide additional in-

formation which can be used for enhancing mapping

accuracy and identifying structural rearrangements

[53].

After completing laboratory work and the actual

sequencing, the researcher is confronted with a huge

amount of raw data. The analysis of the data can be

decomposed into five distinct steps (Figure 1): (i)

quality assessment of the raw data, (ii) read alignment

to a reference genome, (iii) variant identification, (iv)

annotation of the variants and (v) data visualization.

In the following paragraphs, we briefly explain each

of the steps and review available software tools. The

initial list of analysis tools was acquired by perform-

ing multiple PubMed searches. Furthermore, we

conducted additional Internet searches to identify

tools not indexed by PubMed. An overview of the

surveyed tools is given in Supplementary Tables (see

also http://icbi.at/ngs_survey).

Quality assessment
The first analysis step after completing the sequen-

cing run is to evaluate the quality of raw reads and to

remove, trim or correct reads that do not meet the
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defined standards. Raw data generated by sequen-

cing platforms are compromised by sequence artifacts

such as base calling errors, INDELs, poor quality

reads and adaptor contamination [54]. These errors

are quite common in sequencing data, and platforms

are susceptible to a wide range of chemistry and in-

strument failures [55, 56]. As many downstream ana-

lysis tools are not capable of checking for low-quality

reads, it is necessary to perform filtering and trim-

ming tasks in advance to avoid drawing of wrong

biological conclusions. Generally, these steps include

visualization of base quality scores and nucleotide

distributions, trimming of reads and read filtering

based on base quality score and sequence properties

such as primer contaminations, N content and GC

bias.

Several tools have been developed to perform the

various stages of quality assessment (Supplementary

Table S1 shows 11 selected tools). The stand-alone

tools NGSQC Toolkit [54] and PRINSEQ [57] are

able to handle FASTQ and 454 (SFF) files, produce

summary reports and are capable of filtering and

trimming reads. FastQC (http://www.bioinfor

matics.bbsrc.ac.uk/projects/fastqc) is compatible

with all main sequencing platforms and outputs sum-

mary graphs and tables to quickly assess the data

quality. The tool ContEst [58] can be used to esti-

mate the amount of cross-sample contamination in

NGS data. Galaxy offers an integrated tool [59] that

creates FASTQ summary statistics and performs flex-

ible trimming and filtering tasks. htSeqTools [60] and

SolexaQA [55] include quality assessment, processing

and visualization functionality. In addition, software

tools have been published that support only the

Illumina platform (i.e. FASTX-Toolkit (http://han

nonlab.cshl.edu/fastx_toolkit), PIQA [61] and

TileQC [62]) or provide certain specialized function-

ality (i.e. TagCleaner [63]).

Alignment
After reads have been processed to meet a certain

quality standard, they are usually aligned to an exist-

ing reference genome [25]. Currently, there are two

main sources for the human reference genome

assembly: the University of Santa Cruz (UCSC),

which is also hosting the central repository for

ENCODE data [64] and the Genome Reference

Consortium (GRC), which focuses on creating ref-

erence assemblies [65]. Both resources provide sev-

eral versions of the human genome. UCSC offers

versions hg18 and hg19 while GRC provides

GRCh36 and GRCh37. Together these are the

most widely used reference genomes. UCSC (hg)

and GRC (GRCh) human assemblies are identical

[66] but differ with regards to their nomenclature

(e.g. UCSC uses a ‘chr’ prefix).

Over the last years, many alignment programs

have been developed [67] to efficiently process mil-

lions of short reads and include, among others,

Bowtie/Bowtie2 [68, 69], BWA [70, 71], MAQ

[72], mrFAST [73], Novoalign (http://novocraft.

com), SOAP [74], SSAHA2 [75], Stampy [76] and

YOABS [77] (Supplementary Table S2). Since re-

views about characteristics and properties of align-

ment methods have been published elsewhere [26,

67, 78], we do not report a comprehensive list but

rather a shorter list of 17 commonly used tools and

refer to the literature for an in-depth review of the

methods and the corresponding tools.

The sequencing technologies are constantly push-

ing the lengths of generated reads—requiring new

and improved algorithms. First-generation short-read

aligners were often optimized for ungapped align-

ment whereas today’s programs can deal with

longer read lengths and gaps. The majority of cur-

rently available long-read alignment algorithms may

be classified as either using hash table indexing, like

in BLAT [79] or in SSAHA2 or using some sort of

compressed tree indexing based on the Burrows–

Wheeler transform [80]. Most alignment algorithms

follow the seed-and-extend paradigm, where one or

more of so-called seeds are searched followed by an

extension to cover the whole query sequence [26].

Additionally to the selection of the alignment pro-

gram, three issues are noteworthy. First, to overcome

the problem of ambiguity when mapping short reads

to a reference genome, paired-end reads have proven

to be a valuable solution and are highly recom-

mended, if not even a requirement for whole-exome

sequencing and whole-genome sequencing [81].

Second, reads that can only be mapped with many

mismatches should not be considered and as a con-

sequence, mutations that are only backed by such

reads should be discarded from further analysis.

And third, as current NGS technologies incorporate

PCR steps in their library preparations, multiple

reads originating from only one template might be

sequenced, thereby interfering with variant calling

statistics. For that reason, it is common practice to

remove PCR duplicates after alignment in

whole-genome and whole-exome sequencing

studies.
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Variant identification
A crucial part of next-generation genome sequen-

cing data analysis is the identification of variants.

The choice of applied strategies for genotype-calling,

somatic mutation identification and SV exploration

is ultimately related to the data usage. It is of utmost

importance to first carefully design the study as it

ultimately affects analysis and testing strategies [82].

In addition, sequence coverage is an important factor

in variant identification as called mutations should be

supported by several reads [83]. Finally, appropriate

tools for analyzing NGS data [25] have to be thor-

oughly evaluated.

Tools for genome-wide variant identification can

be grouped into four categories: (i) germline callers,

(ii) somatic callers, (iii) CNV identification and (iv)

SV identification. The detection of germline muta-

tions is a central part for finding causes of rare dis-

eases. Cancer studies focus on the identification of

somatic mutations by comparing sequencing results

of tumor/normal pairs from one subject. The tools

for the identification of large structural modifications

can be divided into those which find CNVs and

those which find other SVs such as inversions, trans-

locations or large INDELs. CNVs are currently the

only SVs that can be detected in both whole-

genome and whole-exome sequencing studies.

Therefore, dedicated tools have been designed that

consider the properties of exome capturing [84].

We surveyed 63 tools for variant identification and

provide a list for each of the four categories including

input/output formats, supported platform, types of

detectable variants and usage notes (Supplementary

Tables S3–S6).

Variant annotation
With the large amount of data produced by NGS

experiments, the possibility of predicting the func-

tional impact of variants in an automated fashion is

becoming increasingly important. Computer-aided

annotation enables research groups to filter and pri-

oritize potential disease-causing mutations for further

analysis. The available tools implement different

methods for variant annotation. Most of them

focus on the annotation of SNPs, since they can be

easily identified and analyzed. INDELs are also cov-

ered by some tools, whereas annotation of structural

variants is limited to CNVs and only performed by

recently developed applications.

The most common form of annotation is to pro-

vide database links to various public variant databases

such as dbSNP. In terms of functional prediction of

the variants, the tools employ different approaches,

ranging from simple sequence-based analysis over

region-based analysis to the evaluation of the struc-

tural impact on proteins. The result of the functional

analysis is a classification into accepted and deleteri-

ous mutations. The programs often have more

fine-grained risk classes or scores reflecting the like-

lihood of a deleterious effect.

Many annotation tools are provided as web appli-

cations, which have the advantage that there is no

need for installing or maintaining a local copy.

Usually, applications using web interfaces are easy

to use and self-explanatory. However, users are de-

pendent on the availability and the performance of

the provided services. Another issue is that many of

the online tools do not support batch submission of

variants, thus making them only viable for manual

analysis of a small set of variants. Moreover, legal

issues might arise since most services do not guaran-

tee data confidentiality. On the other hand, offline

tools usually provide more flexibility and are not

dependent on the availability of any specific web-

service, but require the user to have a certain

degree of IT skills. The inspected annotation tools

(74) with their respective input/output formats, sup-

ported variants, type [graphical user interface (GUI),

client or web tools] and usage notes are given in

Supplementary Table S7.

Visualization
An important and challenging step in every NGS

data analysis workflow is the validation and visual-

ization of the generated results. Visual representation

of data can be tremendously useful for the interpret-

ation of obtained results. Therefore, NGS visualiza-

tion tools should support users by displaying aligned

reads, mapping quality and identified mutations

combined with annotations from various public re-

sources. In addition, the tools should be user-

friendly, intuitive and responsive.

Visualization tools for genomic data can be

divided into three different types [85]: (i) finishing

tools supporting the interpretation of sequence data

of de novo or re-sequencing experiments, (ii) genome

browsers that allow users to browse mapped experi-

mental data in combination with different types of

annotation and (iii) comparative viewers that facili-

tate the comparison of sequences from multiple or-

ganisms or individuals. In addition to genome

browsers, software suites have been published
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which enable visualization of identified CNVs and

SVs [86–88], showing a global picture of genomic

rearrangements and SVs. A list of 38 surveyed

genome browsers and two CNV/SV visualization

tools can be seen in Supplementary Tables S8

and S9.

Genome browsers can be divided into two major

types: web-based applications running on a dedicated

web server [89] and stand-alone tools, where most of

them use a GUI. As all genome browsers with a GUI

are implemented in Java, they can be used on plat-

forms such as Windows, Mac and Linux systems.

The main advantage of web-based genome brow-

sers is the support of a variety of annotations. The

user can browse reference genomes as well as differ-

ent types of genomic annotations derived from a

variety of public databases. Furthermore, users do

not need to install new applications with numerous

dependencies, and computational intensive calcula-

tions are performed on the server. A drawback of the

web-based genome browsers is the necessity of up-

loading the data to a remote server, which poses

security and legal issues.

Stand-alone genome browsers offer interactive

browsing and zooming features, which are missing

in some web-based genome browsers. Furthermore,

they do not require uploading the data to websites.

Shortcomings include the need to download anno-

tation files and the user’s responsibility to keep

annotations up-to-date. In addition, complex calcu-

lations have to be performed by regular desktop PCs,

which may not be powerful enough to deal with this

workload.

When interpreting aligned sequences using a

genome browser, it is recommended to consider sev-

eral important aspects [90]. Reads, which could be

mapped with many mismatches should not be

trusted and mutations, which are only backed by a

small fraction of reads should be discarded.

Moreover, reads should only be trusted for further

processing if they align at a unique starting position.

Analytical pipelines and
workflow systems
As can be seen from this review, the scientific com-

munity has access to a plethora of tools for NGS

analysis. Combining these methods for analysis to

obtain biologically meaningful results is still a chal-

lenging task even for experienced users. A viable

alternative is the use of complete analytical pipelines

capable of analyzing all steps starting from raw se-

quences to a set of identified and annotated variants.

The analytical pipelines in general have a prede-

fined order of analysis steps and built-in algorithms

that cannot be easily modified and/or replaced. In

contrast to pipelines, workflow management systems

offer the flexibility to arrange a specific order of ana-

lytical steps and execute a series of data manipulation

or analysis steps. Most existing systems provide GUI

allowing the user to build and modify complex

workflows with little or no programming expertise.

We identified 13 published pipelines and 12 avail-

able workflow systems suitable for NGS analysis,

which process data from various platforms using dif-

ferent tools (see Supplementary Tables S10 and S11,

respectively).

SCOPE ANDMETHODOF
EVALUATIONOF NGSTOOLS
The wealth of available tools reflects the importance

of NGS and the tremendous dynamic of the field of

data analysis. Of the five distinct analytical steps,

quality assessment and read alignment can be con-

sidered as matured and robust. Variant identification,

variant annotation and visualization methods are

essential for the detection of relevant variants and

are still being developed. We therefore assessed se-

lected tools for the latter three categories by installing

and testing them.

Criteria for tool selection
We considered only published, freely available and

constantly maintained tools for in-depth evaluation.

To be classified as maintained, the tool had to be

updated within the last year (cutoff date September

2011) since the analysis of NGS data is a

fast-evolving field and tools need to be constantly

adapted. A further requirement for tool selection

was the support of accepted standard input and

output formats. Additionally, due to the heterogen-

eity of tools available for different parts of the analysis

workflow, we specified distinct selection criteria for

each category as described below.

Variant identification
Germline and somatic variant callers were selected if

they were able to: (i) use Sequence Alignment/Map

(SAM) [91], Binary Alignment/Map (BAM) or

pileup format as input and (ii) provide output results

in the variant call format (VCF). Tools that

page 8 of 23 Pabinger et al.
 at SC

D
U

 M
editerranee on January 24, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbs086/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbs086/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbs086/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbs086/-/DC1
http://bib.oxfordjournals.org/


determine CNVs and SVs were selected when they

accepted SAM/BAM as input format. Table 1 lists all

tools selected for testing.

Variant annotation
For further consideration, annotation programs

were required to: (i) accept VCF as input format

(including tools that offer converters) and (ii)

integrate results from other software (Table 2).

Furthermore, results had to be reported in an

output file, and web-based tools needed to provide

a batch submission system.

Visualization
Selection criteria were the availability of a GUI and

the support of VCF, SAM and BAM, as these

Table 1: Variant identification

Name OS BAM/SAM
input

Other inputs Output Identifies Data set Resulta

Germline callers
CRISP Lin Yes ^ VCF SNP, INDEL KTS 24 034 SNPs, 259 INDELs
GATK (UnifiedGenotyper) Lin Yes ^ VCF SNP, INDEL KTS 49 476 SNPs, 1959 INDELs
SAMtools Lin Yes FASTA VCF SNP, INDEL KTS 21852 SNPs, 332 INDELs
SNVer Lin, Mac,Win Yes ^ VCF SNP, INDEL KTS 22105 SNPs, 234 INDELs
VarScan 2 Lin, Mac,Win No pileup/mpileup VCF,

VarScan CSV
SNP, INDEL KTS 34984 SNPs, 1896 INDELs

Somatic callers
GATK
(SomaticIndelDetector)

Lin Yes ^ VCF INDEL WES 151 INDELs

SAMtools Lin Yes FASTA BCF SNP, INDEL WES Canceledb

SomaticSniper Lin Yes ^ VCF, somatic
sniper output

SNP, INDEL WES 6926 SNPs

VarScan 2 Lin, Mac,Win No pileup/mpileup VCF,
VarScan CSV

SNP,
INDEL, CNV

WES 1685 SNPs, 324 INDELs

CNV identification tools
CNVnator Lin Yes FASTA CSV CNV cnv_sim 39 CNVs
RDXplorer Lin, Mac Yes FASTA CSV CNV cnv_sim 4 CNVsc

CONTRA Lin, Mac Yes FASTA VCF, CSV CNV WES 3 CNVs
ExomeCNV Lin, Mac,Win Yes pileupþ

BEDþFASTA
CSV CNV, LOH WES 137 CNVs

SV identification tools
BreakDancer Lin, Mac Yes config file CSV, BED INDEL, INV,

TRANS,
CNV

WGS
(tumor
þ normal)

6219 DELs, 0 INSs,
7 INVs, 17303 ITX,
5037 CTX

Breakpointer Lin Yes ^ GFF INDEL WGS
(tumor)

d

CLEVER Lin Yes FASTA CLEVER
format

INDEL WGS
(tumor)

d

GASVPro (GASVPro-HQ) Lin, Mac Yes ^ clusters file INDEL, INV,
TRANS

WGS
(tumor)

2529 DELs, 207 INVs

SVMerge Lin Yes FASTA BED INDEL,
INV, CNV

^ Abortede

Four different types of tools for variant identification canbe distinguished: germline callers, somatic callers,CNVidentification and SV identification
tools. Listed are the results of the tested applications (4, 2, 3 and 5, respectively). All surveyed applications are listed in Supplementary Tables
S3^S6. aSNVs are counted based on their position but in a sequence independentmanner. bSomatic mutation calling with SAMtools was canceled
due to unclear definition of tumor and normal files. Furthermore, wewere not able to find the CLR field in the resulting vcf file, which should hold
the Phred-log ratio between the likelihood by treating the two samples independently, and the likelihood by requiring the genotype to be identical.
cFor RDXplorer the filtered result data set was used. dCLEVER and Breakpointer created result files with >2.6 million lines, which need to be fur-
ther processed. eInstallation was aborted due to unreasonable dependencies. OS, operating system; Lin, Linux; Mac, Mac OS X; Win,Windows;
BAM, Binary SAM; BED, Browser Extensible Data, a text-based file format; CSV, comma separated values; FASTA, text-based format for represent-
ing nucleotide sequences; GFF, general feature format; mpileup, multisample pileup; pileup, text-based format representing base-pair information
at each chromosomal position; SAM, Sequence Alignment/Map; VCF,Variant Call Format; CNV, copy number variation; CTX, inter-chromosomal
translocation;DEL, deletion; INDEL, insertion/deletion; INS, insertion; INV, inversions; ITX, intra-chromosomal translocation; LOH, loss of hetero-
zygosity; SNP, single-nucleotide polymorphism; SNV, simple nucleotide variant; SV, structural variant;TRANS, translocations.
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formats are considered a de facto standard in the field.

We did not consider finishing tools, as they are pri-

marily designed for de novo sequencing projects as

well as comparative viewers and genome browsers

that only supported viewing of aligned reads.

Analysis pipelines and workflow systems
The quality assessment step is NGS platform specific

and it is not necessarily a part of an analytical pipeline

or workflow system. Therefore, pipelines and work-

flow systems were selected for close inspection if

they cover the analysis steps of read alignment, vari-

ant detection and variant annotation.

Test data sets and hardware
In order to test the software suites, we selected four

data sets. The first data set (KTS) contains two sam-

ples and is a paired-end whole-exome sequencing

run used for the elucidation of the Kohlschu« tter–

Tönz syndrome [92]. Reads were aligned to the

UCSC reference human genome assembly (hg19)

using the sequence alignment software BWA version

0.5.10 [71] using the default parameters.

For the second data set, we randomly selected one

of the simulated artificial tumor data sets published

by [93] (csv_sim). This data set (14.7 million reads) is

based on chromosome 22 (UCSC reference human

genome assembly hg18), where 42 CNVs with set

sizes of 100, 500 bp, 1, 5, 10, 50 or 100 kb were

simulated. The copy number of the CNV segments

had been chosen to represent either a homo- or het-

erozygous deletion or up to a four-copy gene gain.

The third data set is an example of a whole-exome

sequencing study containing paired-end data from

germline and tumor samples derived from a

42-year-old Hispanic female with mast-cell leukemia

(WES) (SRP008740 [94]). Tumor-genomic DNA

originated from bone marrow biopsies, whereas the

germline sample was derived from saliva of the same

patient. Both samples were aligned to UCSC refer-

ence human genome assembly (hg19) using BWA

version 0.5.10.

For testing SVs, a whole-genome sequencing data

from a liver metastatic lung cancer samples obtained

from lung adenocarcinoma patients (ERP001071,

[95]) was selected (WGS). We randomly chose one

tumor/normal pair (subject AK55) sequenced on an

Illumina HiSeq 2000 of the available data sets. To

enable comparison with the study’s results, read

alignment was performed to UCSC reference

human genome assembly (hg19) using the alignment

program GSNAP [96] version 2012-07-20 and de-

fault parameters.

All tools have been tested with default parameters

on the same server system to ensure comparable re-

sults between the test runs. This system consists of an

HP Proliant DL580 G7 server, equipped with four

Intel E7-4870 CPUs and 512 GB of main memory.

This results in 40 CPU cores at a tact rate of 2.4 GHz

each and 12.8 GB of memory per core. Data storage

was provided by a hybrid system of both 900 GB of

directly attached high-performance hard drives and

30 TB of network attached storage via a 6 GB/s fiber

channel link. On the software side, CentOS 6.2 was

used with all packages on their latest versions. All

Python tools have been tested with a manually com-

piled version of Python 2.7.3. R scripts were exe-

cuted with R version 2.15.1 [97].

EVALUATION RESULTS
In this section, we present the evaluation results for

the three essential NGS data analysis steps (Figure 1):

(i) variant identification, (ii) variant annotation and

(iii) visualization. Additionally, we closely describe

existing pipelines integrating read alignments, variant

identification and annotation. We were able to install

and run all selected tools (in total 32 programs). It is

noteworthy that the installation and maintenance of

the majority of the tools and/or pipelines require

certain degree of IT expertise, which is usually pro-

vided by the local IT department. Below we briefly

describe the tools and provide additional information

of the software in Supplementary Information I1.

Variant identification
The evaluated tools for variant identification were

divided into four groups (Table 1): germline callers

(five tools), somatic callers (four tools), CNV identi-

fication tools (four tools) and SV identification tools

(five tools).

Germline callers
‘CRISP’ [98] is a tool for identifying SNPs and

INDELs from pooled NGS data. It is intended to de-

tect both rare and common variants. Furthermore, it

has been specifically designed to detect variants from

pooled data and should not be used for analysis of

single samples.

‘GATK’ [99] is a software library that provides a

suite of tools for working with human data, includ-

ing depth of coverage analyzers, a quality score
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recalibrator, a local realigner and a SNP/INDEL

caller. The authors offer extensive documentation

and an informative wiki system. In addition to calling

germline variants, GATK can be used to identify

somatic mutations.

‘SAMtools’ [91] is a versatile collection of tools for

manipulating SAM and BAM files. It contains a

subset of commands called BCFtools. BCFtools has

also the ability to call SNPs and short INDELs from a

single alignment file. Furthermore, SAMtools can be

used to call somatic mutations from a pair of samples.

‘SNVer’ [100] is an operating system independent

statistical tool for the identification of SNPs as well as

INDELs, in both pooled and individual NGS data.

Recently, SNVerGUI [101] has been published,

which provides a GUI version of SNVer tool.

‘VarScan 2’ [102] is a platform-independent pro-

gram that can be used to identify germline variants,

as well as shared and private variants. In addition to

germline variants, ‘VarScan 2’ is able to identify som-

atic mutations and somatic CNVs. Germline variants

are called using a heuristic method as well as a stat-

istical test based on the number of aligned reads sup-

porting each allele.

CRISP, GATK, SAMtools, SNVer and VarScan 2

were tested with the KTS data set. The tools identi-

fied �24 000, 49 000, 22 000, 22 000 and 34 000

SNPs as well as 259, 1959, 234, 332 and 1896

INDELs, respectively. Figure 2A depicts the overlap

of identified variants in a Venn diagram. More than

13 000 of identified SNPs are overlapping between

all used tools, in contrast to INDELs where none is

shared with all applications. CRISP reports the

lowest number of non-overlapping SNPs (8),

whereas >23% of SNPs are only identified by

GATK. VarScan 2 and GATK share the largest

number of overlapping INDELs (�57%) in contrast

to SNVer, where 99% of reported INDELs are not

identified by any other tool. In summary, tools differ

widely regarding called INDELs and show larger

agreement in identified SNPs. It is however note-

worthy that all INDELs called by CRISP were also

identified by GATK (96% by VarScan2).

Somatic callers
In addition to GATK, SAMtools and VarScan 2, we

evaluated another somatic caller: ‘SomaticSniper’.

‘SomaticSniper’ [103] is a command-line application

to identify SNPs that are different between tumor/

normal pairs. It calculates a somatic score that

predicts the probability that tumor and normal geno-

types are different.

GATK, SAMtools, SomaticSniper and VarScan 2

were tested using the whole-exome tumor data set.

As SAMtools does not clearly specify how to define

the input for tumor and normal data sets and the

generated result file lacked information about the

somatic score, SAMtools was not further considered

for calling somatic mutations. GATK is only capable

of calling INDELs and reported 151 mutations.

SomaticSniper could identify 6926 SNPs and

VarScan 2 was able to detect 1685 SNPs and 324

INDELs. Compared with germline results, the

agreement of the identified variants is small (depicted

in Figure 2B).

Copy number variations identification
We tested four tools for CNV identification: (i)

‘CNVnator’ [104], a CNV discovery and genotyping

tool for whole-genome sequencing data which uses

read-depth analysis based on mean shift; (ii)

CONTRA [105], a tool for detecting CNVs in

whole-exome data. The application calls copy

number gains and losses for each specified target

region; (iii) ‘ExomeCNV’ [84], a R package for

the identification of CNVs and loss of heterozygosity

from whole-exome sequencing data. The tool works

best when paired samples (i.e. tumor/normal pairs)

are available and (iv) ‘RDXplorer’ [106], a tool for

detecting CNVs in human whole-genome sequen-

cing data. It uses read depth coverage and detects

CNV based on the event-wise testing algorithm. It

should be noted that due to numerous dependencies,

the installation of this tool is challenging for

non-experienced users.

CNVnator and RDXplorer were tested using the

simulated CNV data set with known number of

CNVs (42). CNVnator was able to call 39 CNVs;

RDXplorer identified 4 CNVs (filtered results). This

results in a precision and recall of 0.74 and 0.69, as

well as 1 and 0.1 for CNVnator and RDXplorer,

respectively. Figure 2C depicts the agreement be-

tween known (cnv_sim) and predicted CNVs.

As CONTRA and ExomeCNV were designed for

the analysis of whole-exome sequencing data, the

‘WES’ data set was used for testing. ExomeCNV

identified 137 CNVs, whereas CONTRA was able

to call 8940 CNVs using a P-value� 0.05. Three out

of those were reported as significant (adjusted

P-value� 0.05), whereby the usage of a less-conser-

vative threshold (adjusted P-value� 0.1) resulted in
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11 CNVs. Out of the remaining 11, 10 CNVs were

located within 3 CNVs reported by ExomeCNV.

The direction (gain/loss) reported by both tools was

the same for all of the overlapping variants.

Structural variants identification
‘BreakDancer’ [107] predicts five types of structural

variants: insertions, deletions, inversions, inter- and

intra-chromosomal translocations.

‘Breakpointer’ [108] is a command-line tool espe-

cially designed for the location of potential intra-

chromosomal sequence breakpoints from single end

reads. It uses a heuristic method to identify local

mapping signatures created by INDELs longer than

the read’s length or other SVs.

‘CLEVER’ [109] identifies SVs in genomes from

paired-end sequencing reads. It uses an insert size-

based approach, which takes all reads into account.

The tool offers an intuitive script with default par-

ameters to facilitate usability.

‘GASVPro’ [110] represents the probabilistic ver-

sion of the original GASV algorithm [111] and de-

tects SVs from paired-end data.

‘SVMerge’ [112] is a software suite that integrates

results from several different SV callers and performs

subsequent validation and refinement of identified

breakpoints. Unfortunately, the software suite is

not provided as a ready-to-use virtual box or

cloud implementation, which would enhance the

usability.

Figure 2: Venn diagrams showing the number of identified variants for tested germline (A), somatic (B), CNV (C)
and exome CNV (D) tools. The depicted numbers in (A) and (B) report identified SNPs and INDELs.Venn diagram
(C) shows the overlap between known (cnv_sim) and predicted CNVs. Figure (D) illustrates the overlap between
CONTRA and ExomeCNV. The intersection numbers were adjusted to reflect that 10 CNVs detected by
CONTRA are located within 3 CNVs reported by ExomeCNV.
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BreakDancer was tested with the WGS tumor/

normal data set and identified 6219 deletions, 7 in-

versions, 17 303 intra- and 5037 inter-chromosomal

translocations. All other inspected SV callers were

applied on the WGS tumor data set only.

Breakpointer determined 2.7 million possible intra-

chromosomal breakpoints in total. CLEVER pro-

duced 2.6 million entries. ‘GASVPro-HQ’ identified

3941 raw deletions and 407 raw inversions, which

were automatically reduced to 2529 and 207,

respectively. Although GASVPro commands offer

to call inter-chromosomal variations, the feature is

not yet supported by its pipeline scripts. Testing of

SVMerge was aborted, as installation dependencies

are likely beyond the IT skill levels of many bench

scientists.

In summary, all selected tools for variant identifi-

cation were successfully installed and tested with the

appropriate data sets. As can be seen in Figure 2 and

Table 1, there were considerable differences in the

obtained results. The agreement between the callers

was larger for SNPs compared with INDELS and

larger for germline than for somatic mutations, re-

spectively. Furthermore, the results show even

bigger discrepancy for the identified CNVs and

SVs (Figure 2 and Table 1).

There are several possible explanations for this ob-

servation. First, there are a number of parameters and

thresholds that can be adjusted for the specific tools

and hence, influence the outcome. Early methods

for genotype calling are based on fixed cut-offs

whereas recent methods such as GATK or

SAMtools provide measures of statistical uncertainty

when calling genotypes and hence, might improve

the accuracy (see also excellent review on genotype

and SNP calling by Nielsen et al. [25]). Second, the

underlying statistical models are divergent and harbor

different assumptions, which are often difficult or

impossible to evaluate experimentally. For example,

the ploidy, the degree of tumor heterogeneity and

the percentage of normal cells in the sample are in

most cancer studies difficult to estimate. Thus, using

a statistical model based on a diploid genome would

in this case inevitably lead to erroneous results.

Third, in order to assess the performance of newly

developed tools, the authors often rely on simulated

data to benchmark their method. However, due to

the complexity of the underlying error model and

the varying properties of NGS data, simulated data

may be neglecting certain error cases and make as-

sumptions that are not valid. Furthermore, the use of

simulated data for the development of a new tool

might tailor the method to specific data sets and

hence, severely hamper the performance when

using real NGS data. Further studies are required

in order to benchmark the performance of the vari-

ant callers either by using an exome or genome-scale

size simulation data set or a large number of experi-

mentally evaluated variants by Sanger re-sequencing

as shown recently [113]. We also strongly believe

that further theoretical studies are necessary to de-

velop new and/or improved variant callers. As the

number of sequenced genomes/exomes is steadily

increasing, specific statistical models will become

available for certain diseases or cohorts.

Variant annotation
Below we describe the evaluation results of the eight

selected tools (see also Table 2).

‘ANNOVAR’ [114] is a command-line tool for

up to date functional annotation of various genomes,

supporting SNPs, INDELs, block substitutions as

well as CNVs. The tool provides a wide variety of

different annotation techniques, organized in the

categories gene-based, region-based and filter-based

annotation. The tool depends on several databases,

which need to be downloaded individually. This ap-

proach ensures that the correct database version is

used and the download of large unnecessary data

sets is avoided.

‘AnnTools’ [115] is a command-line tool for ana-

lyzing SNPs, INDELs and CNVs found in both

coding and non-coding regions. The program relies

on 15 different widely used data sources such as

dbSNP, which are regularly updated. A database

update tool is provided to help keep the local data-

base up-to-date.

‘NGS–SNP’ [116] is a collection of Perl scripts for

the annotation of SNVs using the Ensembl database

as a reference. The program uses the online version

of the Ensembl database, which has the advantage

that the reference database is always up-to-date. In

comparison to other tools, NGS–SNP took several

days to complete the annotation process, which is

likely due to the latency of querying the online data-

base during the tool’s execution.

The ‘SeattleSeq’ Annotation server (http://snp.gs.

washington.edu/SeattleSeqAnnotation) provides a

web application for annotating human SNPs and

INDELs. In contrast to most other web-based anno-

tation services, SeattleSeq provides the possibility to

directly upload input files in various formats for batch
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analysis of multiple variants. The analysis of both

hg18/GRCh36 and hg19/GRCh37 data is sup-

ported by providing a separate input page for each

genome version. As variant annotation is performed

on a remote server, the tool might be interesting for

research groups without dedicated hardware for data

analysis.

‘Sequence variant analyzer (SVA)’ [117] is a

stand-alone tool with a GUI dedicated to annotating

and visualizing variants identified by NGS experi-

ments. The tool includes its own genome browser

and supports annotation of SNPs, INDELs and

CNVs. Setting up the program and writing the pro-

ject configuration file might be difficult without IT

expertise. As the hardware requirements are rather

demanding, the use of a powerful workstation is rec-

ommended (>48 GB of RAM; >1 TB free hard disk;

quad core processor). The program could not cor-

rectly annotate VCF files, which were using a UCSC

hg reference version.

‘snpEff’ [118] is a popular variant annotation,

which has also been integrated within Galaxy and

GATK. In addition to SNPs, the tool also supports

INDELs and multiple-nucleotide polymorphisms.

snpEff identifies various different effects, which are

categorized into four classes (high, moderate, low

and modifier) by their functional impact.

‘VARIANT’ [119] can detect the functional prop-

erties of SNVs in coding as well as non-coding re-

gions. The program can be used via a web interface,

as a command-line tool or as a web service. Since the

command-line tool also makes use of the remote

VARIANT database, the tasks of maintaining and

searching of databases are provided by the authors.

Therefore, the command-line version of the tool is

usable without profound IT expertise and can be

executed on regular office PCs. The web interface

features anonymous usage and allows creation of per-

sonal accounts, which enables users to view their

uploaded input files and analysis results once they

log in.

‘Variant effect predictor (VEP)’ [120] is Ensembl’s

own functional annotation tool, formerly known as

SNP effect predictor. The tool can be used either by

a web interface, as command-line tool or via a Perl

API. The web interface version is aimed at users

analyzing smaller sets of variants, as it is only capable

of processing 750 variants per file.

In summary, all annotation tools provide a set of

general (e.g. mutation introduces a new stop codon)

or detailed (e.g. mutation hits an exon) attributes for

each identified mutation. These properties can be

used to assess the potential impact of each mutation.

All tested applications provide links to one or

more public databases of known mutations. Four

of the tested tools provide prediction scores

reflecting their estimated deleterious impact.

ANNOVAR uses six different scores: GERPþþ

[121], LRT [122], MutationTaster [123], PolyPhen

[124], PhyloP conservation [125] and SIFT [126].

SeattleSeq supplies four scores: GERP [127],

Grantham [128], phastCons [129] and PolyPhen.

NGS–SNP and VEP provide three scores: Condel

[130], PolyPhen and SIFT. These scores are com-

puted based on various different approaches, such as

sequence homology, evolutionary conservation, pro-

tein structure or statistical prediction based on

known mutations. Due to the possibility of precal-

culating several scores (GERP, PolyPhen and SIFT)

for every position in the genome, tools such as

ANNOVAR or SeattleSeq make use of databases

to look up the requested annotation. Hence, the

annotation process itself is very fast as no on the fly

calculation is needed and similar results are reported.

It should be noted that results are often difficult to

interpret for inexperienced users. Furthermore,

among the tested tools, only stand-alone tools

(ANNOVAR, AnnTools and SVA) were able to

annotate identified CNVs.

Visualization
All of the evaluated genome browsers have in

common that they are capable of displaying numer-

ous 1D tracks which contain information about the

reference genome, the transcriptome, aligned reads,

found mutations, annotations collected from public

data sources or other data types important for the

correct interpretation of results [131]. The two

types of genome browsers, namely web-based appli-

cations and stand-alone tools, as well as CNV/SV

visualization tools are given in Table 3.

Web-based applications
‘The Ensembl Genome Browser’ [132] provides a

variety of reference genomes in combination with

numerous local annotation sets and external re-

sources. This genome browser is able to display con-

tinuative information when searching for a specific

entity. Users can add their own tracks either by up-

loading the data file (restricted to 5 MB) or by spe-

cifying a remote URL or the distributed annotation

system (DAS). It is not necessary to create an
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Ensembl account to attach or upload data, but it can

be used to save specific information for later use.

‘The University of Santa Cruz (UCSC) Genome

Browser’ [133] offers several different annotations,

including phenotype and disease annotations. User-

specific data can either be uploaded or remotely

hosted and provided by an URL. The UCSC data-

base comprises almost 1800 annotation tracks for the

human genome GRCh37/hg19.

‘The Vertebrate Genome Annotation (Vega)

Genome Browser’ [134] is built upon code of the

Ensembl Genome Browser. Data available in Vega is

based on a freezed Ensemble release that has under-

gone manual annotation and curation by the Havana

group at the Welcome Trust Sanger Institute. The

genome browser offers standardized gene classifica-

tion encompassing pseudogenes, non-coding tran-

scripts and PolyA sites. Vega contains annotations

from different species for comparative analysis, but

currently human chromosomes 18 and 19 are still

outstanding.

In general, web-based genome browsers provide

different reference genomes already integrated with a

variety of annotation tracks. A drawback is the

required data handling, as the user has to provide

URLs for external files, which requires uploading

large amount of data to either a local web server or

a remote location. In addition, files need to be

packed, sorted and indexed before they can be used.

Stand-alone applications
‘Artemis’ [135] incorporates BamView [136] for

viewing aligned reads and is able to display different

properties of a loaded sequence. It features two se-

quence windows, which can be used to display the

same sequence at different zoom levels. Artemis

allows filtering of variants based on different proper-

ties in real time and supports the export of calculated

properties such as SNP density and read counts.

‘The Integrative Genomics Viewer (IGV)’ [137]

supports loading of tracks, reference genome as well

as annotation data from local or remote data sources.

Furthermore, the tool uses the DAS system and is

capable of handling >30 different file formats. IGV is

also capable of displaying sample metadata (e.g. gen-

der and age) as a heatmap, which can be shown ad-

jacent to the sample’s corresponding track. The IGV

tool package provides functionality for tiling, count-

ing, sorting and indexing of several file formats. In

addition to the stand-alone GUI version, IGV can be

launched and controlled using scripts enabling the

generation of different image snapshots at once.

‘Sequence Annotation and Visualization and

ANalysis Tool (Savant)’ [138] uses a modular dock-

ing framework, where each module appears as a sep-

arate window. Local as well as remote data sets can

be loaded into Savant, and it supports simple file

formatting functionality (e.g. VCF zipping and

indexing).

Table 3: Visualization

Name OS BAM/
SAM

VCF Other formats Annotation

Web-based genome browsers
Ensembl Genome Browser web interface Yes Yes BED, bedGraph,GFF,GTF, PSL,WIG, BAM, bigWig Yes
UCSC Genome Browser web interface Yes Yes BED, bigBed, bedGraph,GFF,GTF,WIG, bigWig, MAF, SNP, PSL Yes
VEGAGenome Browser web interface Yes Yes BED, bedGraph, bigBed, bigWig,GBrowse,GFF,GTF, PSL,WIG Yes

Stand-alone genome browsers
Artemis Lin, Mac,Win Yes Yes BCF, FASTA Yes
Integrative Genomics
Viewer (IGV)

Lin, Mac,Win Yes Yes SNP,GFF, BED, IGV, TAB,WIG, (>30 formats) Yes

Savant Lin, Mac,Win Yes Yes FASTA, BED,GFF,WIG, TAB Yes
CNV and SV visualization

Circos Lin, Mac,Win,
web interface

No No GFF, CSV Yes

This table holds genomebrowsers aswell as tools producing circos plots, wherebygenomebrowserswere split intoweb-based applications, access-
ible using aweb browser and stand-alone tools with a graphical user interface. All genome browsers use tracks to display different features like ref-
erence genome, annotations or experimental data. Further visualization tools can be found in Supplementary Tables S8 and S9. OS, operating
system; Lin, Linux; Mac, Mac OSX; Win,Windows; BAM, Binary SAM; BCF, Binary VCF; BED, Browser Extensible Data, a text-based file format;
bedGraph, file format allowing the display of continuous-valued data in track format; bigBed, compressed, binary-indexed BED file; bigWig, com-
pressed, binary indexed WIG file; FASTA, text-based format for representing nucleotide sequences; GBrowse,Gbrowse proprietary format; GFF,
General Feature Format; GTF, GeneTransfer Format; IGV, Integrative Genomics Viewer format; MAF, Multiple Alignment Format; PSL, pattern
space layout; SAM, Sequence Alignment/Map; SNP, Personal Genome SNP format; TAB, tab-delimited file; VCF,Variant Call Format; WIG,Wiggle
Track Format.
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All tested stand-alone genome browsers are imple-

mented in Java, and therefore run on all operating

systems with an installed JVM. The applications are

able to load different reference genomes and com-

bine them with tracks holding experimental data or

annotations. The stand-alone genome browsers

showed excellent performance for zooming and pan-

ning and were able to visualize SNPs and INDELs.

Moreover, they generally feature a rich user interface

and sometimes support the inclusion of custom ana-

lytical modules using a plug-in architecture (Savant).

Web-based genome browsers facilitate displaying of

data in context with already existing annotations and

data tracks without the need for downloading or

installing additional information. Moreover, due to

their universal accessibility, they support collabor-

ation within or between different institutions.

Thus, given the above characteristics, the selection

of a genome browser for prospective users and for

specific criteria is straightforward.

CNVand SV visualization
‘Circos’ is a widely used command-line tool written

in Perl for the visualization of similarities and differ-

ences of genomes. Although it is capable of visualizing

arbitrary data, it is clearly intended for multi-sample

genomic data. Extensive documentation and tutorials

are provided which are helpful to correctly set up all

configuration files. In addition to the simple

command-line interface, an online version of the

tool is available allowing the upload of input data

and configuration files using a simple web interface.

Circos is very flexible and allows users to display data

as scatter, line and histogram plots, as well as heat

maps, tiles, connectors and text. Due to this flexibility,

the learning curve for new users is steep and it might

take some time to explore all available options.

Analysis pipelines and workflow systems
We evaluated three analytical pipelines (‘HugeSeq’,

‘SIMPLEX’ and ‘TREAT’) and three workflow

systems (‘Galaxy’, ‘LONI’ and ‘Taverna’).

‘HugeSeq’ [139] is a fully integrated pipeline for

NGS analysis from aligning reads to the identification

and annotation of variants (SNPs and INDELs for

whole-genome and whole-exome sequencing data

as well as CNVs and SVs for whole-genome data

only). It consists of three main parts: (i) preparing

and aligning reads, (ii) combining and sorting reads

for parallel processing of variant calling and (iii) vari-

ant calling and annotating. The pipeline accepts as an

input reads in FASTA or FASTQ format and outputs

identified variants in VCF format, and SVs and

CNVs in GFF format. Identified variants are further

processed with ANNOVAR to include additional

annotations.

‘SIMPLEX’ [140] is an autonomous analysis pipe-

line for the analysis of NGS exome data, covering

the workflow from sequence alignment to SNP/

INDEL identification and variant annotation. It sup-

ports input from various sequencing platforms and

exposes all available parameters for customized

usage. It outputs summary reports and annotates de-

tected variants with additional information for dis-

crimination of silent mutations from variants that are

potentially causing diseases. SIMPLEX is provided as

a ready-to-use virtual machine and can be used in

the Amazon EC2 Cloud.

‘TREAT’ [141] is a pipeline where each of the

three modules (alignment, variant calling and variant

annotation) can be used separately or as an integrated

version for an end-to-end analysis. It provides a rich

set of annotations, HTML summary report and vari-

ant reports in Excel format. TREAT can be down-

loaded for local use (requires large main memory) or

launched on the Amazon EC2 Cloud. The pipeline

currently provides only the human reference

genome hg18.

‘Galaxy’ [142] is a web-based platform where the

user can perform, reproduce and share complete ana-

lyses. Pipelines are represented as a history of user

actions, which can be stored as a dedicated work-

flow. It contains scripts for over a 100 analysis tools

and users can add new tools (requiring basic inform-

atics skills) and share all analysis steps and pipelines.

Workflows are stored directly in a dedicated data-

base, and jobs can be distributed onto a high-

performance computing infrastructure. Researchers

can use the online version, install a local version on

their server system or run Galaxy on the Amazon

EC2 Cloud.

‘LONI’ [143] is a workflow processing application

that can be used to wrap any executable for use in

the LONI system. In order to access the tools, users

need to connect to either public or private pipeline

servers. Workflows can be divided into several mod-

ules and researchers can either use existing modules

or create new ones from scratch. Several NGS ana-

lysis workflows have been published that are ready to

be imported and used.

The ‘Taverna’ [144] workflow management

system stores workflows in a format that is simple
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to share and manipulate outside the editor. Initially,

it was not shipped with any prepackaged NGS ana-

lysis tools, and integrating tools required some pro-

gramming experience. However, workflows for

NGS have been made public that use a specific

queuing system to distribute jobs to a computational

cluster. These workflows can be downloaded and

imported, and additionally edited.

In summary, the analytical pipelines provide

out-of-the box solutions for analyzing whole-

genome or whole-exome sequencing data. How-

ever, due to the fixed choice of included tools they

do not provide as much flexibility as the workflow

systems. In contrary, the tested workflow systems

offer greater flexibility for integrating analytical

tools but often require to manually install analysis

tools and may not offer predefined solutions to ana-

lyze sequencing data.

DISCUSSION
In our report, we provide a comprehensive survey of

tools available for the analysis of whole-genome/

whole-exome data covering all analytical steps: qual-

ity assessment, alignment, variant identification, vari-

ant annotation and visualization. The information

we provide represents a valuable guideline for both

an expert in the field and a less-experienced user to

select the appropriate tools for a specific application

and assemble an optimal analytical pipeline. The ana-

lysis of NGS data is a fast moving field and recom-

mendations which tools to use might quickly

change. Nevertheless, we make the following gen-

eral recommendations.

First, tools for quality assessment and alignment

matured to a great extent and the choice is rather

straightforward. Depending on the supporting plat-

form, several tools are available that report properties

and quality of obtained sequencing reads. Among the

evaluated tools, FASTQC and NGSQC are capable

of providing reports for FASTQ as well as the ABI

SOLiD file format. Based on the obtained quality

results, tools can be used to trim or remove reads

that do not suffice the predefined quality standards.

We recommend tools that are in active development

and provide trimming as well as filtering functional-

ity such as FASTX-Toolkit or PRINSEQ. Similarly,

alignment software suites have been constantly im-

proved over the past few years and several tools are

widely used and supported by a large user commu-

nity. For example, BWA, Bowtie and SOAP have

matured greatly and are actively used in NGS data

analysis projects. It is noteworthy that support for the

ABI SOLiD platform has been dropped in recent

versions of some of the alignment tools (e.g.

BWA > 1.6.0, Bowtie2).

Second, for variant identification, we suggest a

consensus approach, e.g. running CRISP, GATK

and SAMtools on the same data set. It has been re-

ported that no single approach comprehensively cap-

tures all genetic variations, and therefore, several

variant identification tools should be applied.

Variants will then only be considered if they fulfill

certain criteria (e.g. identified by a minimum

number of independent variant callers) [145].

However, applying such stringent criteria inevitably

filters out true positives. If the candidate variant is

missed, the search can be broadened and additional

biological criteria can be applied. It is well known

that the used library preparation method and the

selected sequencing technology directly influence

the reported outcome. It is therefore good practice

to consider certain metrics (e.g. strand bias) and use

heuristic approaches to separate true positives from

false positives. Finally, additional aspects worth con-

sidering are the availability of up-to-date documen-

tation and the existence of an active user

community.

Third, the choice of an annotation tool is largely

dependent on the desired selection of variant anno-

tations. Four of the evaluated tools (ANNOVAR,

SeattleSeq, NGS–SNP and VEP) include prediction

scores, which are used to reflect the estimated dele-

terious impact of a particular variant. Several tools

have been published that generate multiple vari-

ant annotations at once, which can be tremendously

useful for shortening the analysis time

(e.g. ANNOVAR, SeattleSeq or VARIANT).

Furthermore, tools should be selected that regularly

update the included information of publicly available

databases. In addition, users should consider possible

security issues when using web-based annotation

tools.

Fourth, visualization tools are usually easy to install

and it might therefore be a valid approach to test

different software suites. In addition, some visualiza-

tion programs such as IGV, Savant or the UCSC

Genome Browser offer the possibility to obtain an-

notation tracks—such as reference genomes—which

facilitates the usage for inexperienced users. Further

consideration for the choice of the visualization tool

is the possibility to handle the data format used in
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previous analysis methods for reporting variants and

variant annotations. When choosing web-based sys-

tems, users should be aware of security and legal

issues that might arise.

Prioritization of candidate variants
With the use of whole-exome and whole-genome

sequencing, the challenge of the ‘next-generation

genetics’ is one of narrowing down the list of can-

didate variants and interpreting remaining variants

within a biological context [146]. A widely used ap-

proach to substantially reduce the candidate list is to

exclude known variants which are present in public

SNP databases, published studies or in-house data-

bases as it is assumed that common variants represent

harmless variations [147]. Another way to narrow

down the genomic search space is the use of pedigree

information, i.e. sequencing distantly related individ-

uals with the phenotype of interest which might be

sufficient to identify the causing mutation [148]. This

approach is also helpful to identify the cause of

common disorders that are genetically highly hetero-

geneous. However, since each generation introduces

up to 4.5 deleterious mutations [149], it might be as

well that a de novo mutation is causing the disease.

Furthermore, without family information, it is often

difficult to predict whether a disease follows a reces-

sive or dominant inheritance [147].

In the case of cancer genomes, all potential vari-

ations need to be considered, including germline sus-

ceptibility loci, somatic SNPs and INDELs, CNVs

and SVs [150]. A common method is to use pairwise

comparison of tumor and normal tissues from the

same individual to distinguish somatic coding muta-

tions [10] and to identify driver mutations [18, 19].

In addition, tools have been published that can de-

termine significant mutations in cancer by using

groups of tumor/normal sample pairs, clinical data

and identified variants from the cohort under inves-

tigation [151].

All prioritization methods have in common that

researchers risk removing the pathogenic variant

[147] which is reflected by the currently reported

high rates of false-positive and false-negative predic-

tions [152, 153]. Therefore, prediction tools should

be used with caution since they may not be reliable

enough to infer a definitive diagnosis [154]. The use

of different prioritization approaches [147] and the

combination of prediction results with phenotypic

and pedigree data as well as data from databases

might be the best approach to determine the poten-

tial cause of the disease under investigation [154].

Outlook
As sequencing costs continue to fall, we will experi-

ence a shift from sequencing human whole-exomes

to whole-genomes, which will create the need for

even more sophisticated methods to find the muta-

tions causal for diseases [10]. We believe that future

developments of workflow and pipeline systems will

tremendously facilitate the analysis of NGS data, as

they do not require complex installation routines and

necessary data conversion steps from end-users.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key points

� Next-generation sequencing technologies provide unprece-
dented opportunities to characterize individual genomic land-
scapes and identify mutations relevant for diagnosis and therapy
for Mendelian disorders, complex diseases and cancers.

� In this article, the variant analysis workflow for whole-genome
and whole-exome sequencing is described, and software tools
supporting each step are outlined.

� Themain focuses of this review articlewere the steps of variant
identification, variant annotation and visualization.

� We selected 32 tools and tested them using four different data
sets.
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137. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative
Genomics Viewer (IGV): high-performance genomics
data visualization and exploration. Brief Bioinformatics
2012; doi:10.1093/bib/bbs017 (Advance Access publica-
tion 19 April 2012).

138. Fiume M, Williams V, Brook A, et al. Savant: genome
browser for high-throughput sequencing data.
Bioinformatics 2010;26:1938–44.

139. Lam HYK, Pan C, Clark MJ, et al. Detecting and annotat-
ing genetic variations using the HugeSeq pipeline. Nat
Biotechnol 2012;30:226–9.

140. Fischer M, Snajder R, Pabinger S, et al. SIMPLEX:
cloud-enabled pipeline for the comprehensive analysis of
exome sequencing data. PLoSONE 2012;7:e41948.

141. Asmann YW, Middha S, Hossain A, et al. TREAT: a bio-
informatics tool for variant annotations and visualizations in
targeted and exome sequencing data. Bioinformatics 2012;
28:277–8.

142. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehen-
sive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences.
Genome Biol 2010;11:R86.

143. Rex DE, Ma JQ, Toga AW. The LONI pipeline process-
ing environment. Neuroimage 2003;19:1033–48.

144. Hull D, Wolstencroft K, Stevens R, et al. Taverna: a tool
for building and running workflows of services. Nucleic
Acids Res 2006;34:W729–32.

145. Mills RE, Walter K, Stewart C, et al. Mapping copy
number variation by population-scale genome sequencing.
Nature 2011;470:59–65.

146. Cooper GM, Shendure J. Needles in stacks of needles:
finding disease-causal variants in a wealth of genomic
data. Nat Rev Genet 2011;12:628–40.

147. Gilissen C, Hoischen A, Brunner HG, et al. Disease gene
identification strategies for exome sequencing. Eur J Hum
Genet 2012;20:490–7.

148. Bamshad MJ, Ng SB, Bigham AW, et al. Exome sequen-
cing as a tool for Mendelian disease gene discovery. Nat
RevGenet 2011;12:745–55.

149. Lynch M. Rate, molecular spectrum, and consequences
of human mutation. Proc Natl Acad Sci USA 2010;107:
961–8.

150. Mardis ER. Genome sequencing and cancer. Curr Opin
Genet Dev 2012;22:245–50.

151. Hindorff LA, Gillanders EM, Manolio TA. Genetic archi-
tecture of cancer and other complex diseases: lessons
learned and future directions. Carcinogenesis 2011;32:
945–54.

152. Mathe E, Olivier M, Kato S, et al. Computational
approaches for predicting the biological effect of p53 mis-
sense mutations: a comparison of three sequence analysis
based methods. Nucleic Acids Res 2006;34:1317–25.

153. Wei Q, Wang L, Wang Q, et al. Testing computational
prediction of missense mutation phenotypes: functional
characterization of 204 mutations of human cystathionine
beta synthase. Proteins 2010;78:2058–74.

154. Lindblom A, Robinson PN. Bioinformatics for human
genetics: promises and challenges. Hum Mutat 2011;32:
495–500.

Survey of tools for variant analysis of next-generation genome sequencing datapage 23 of 23
 at SC

D
U

 M
editerranee on January 24, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/

