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Interest in single-cell whole-transcriptome analysis is 
growing rapidly, especially for profiling rare or heterogeneous 
populations of cells. We compared commercially available 
single-cell RNA amplification methods with both microliter  
and nanoliter volumes, using sequence from bulk total RNA and 
multiplexed quantitative PCR as benchmarks to systematically 
evaluate the sensitivity and accuracy of various single-cell  
RNA-seq approaches. We show that single-cell RNA-seq can 
be used to perform accurate quantitative transcriptome 
measurement in individual cells with a relatively small number 
of sequencing reads and that sequencing large numbers of 
single cells can recapitulate bulk transcriptome complexity.

High-throughput sequencing of whole transcriptomes, or RNA-
seq, has been used extensively to profile gene expression from 
bulk tissues. There is a growing demand for methods that allow 
whole-transcriptome profiling of single cells, driven by (i) the 
need for direct analysis of rare cell types or primary cells for which 
there may be insufficient material for conventional RNA-seq pro-
tocols and (ii) the desire to profile interesting subpopulations 
of cells from a larger heterogeneous population1,2. It has been 
shown that the average expression level of a population of cells 
can be strongly biased by a few cells with high expression and is 
thus not reflective of a typical individual cell from that popula-
tion3. Measurements using FISH indicate that levels of specific 
transcripts can vary as much as 1,000-fold4 between presumably 
equivalent cells, further illustrating the value of profiling whole 
transcriptomes at the single-cell level.

Various methods for performing single-cell RNA-seq have been 
reported5–15, but many questions remain about the throughput 
and quantitative-versus-qualitative value of single-cell RNA-
seq measurements. In particular, performance has mainly been 
evaluated with respect to sensitivity and precision. Sensitivity 
is typically measured by counting the number of genes whose 
expression is detected per cell, and precision is measured by 
how well the results can be reproduced on replicate samples.  

However, in order to assess the validity of a measurement, it 
is also critical to evaluate accuracy, or how close the measure-
ment comes to the true value. Accuracy depends on systematic 
errors deriving from the data collection method, and it is often  
estimated by using different measurement techniques on the same 
sample type.

Here we report quantitative RNA-seq analysis of 102 single-cell 
human transcriptomes. We assessed the performance of com-
mercially available single-cell RNA amplification methods in 
both microliter and nanoliter volumes, compared each method to 
conventional RNA-seq of the same sample using bulk total RNA 
and evaluated the accuracy of the measurements by independ-
ently quantitating expression of 40 genes in the same cell type by 
multiplexed quantitative PCR (qPCR)16,17. Our results show that 
it is possible to use single-cell RNA-seq to perform quantitative 
transcriptome measurements of single cells and that, when such 
measurements are performed on large numbers of cells, one can 
recapitulate both the bulk transcriptome complexity and the dis-
tributions of gene expression levels found by single-cell qPCR.

RESULTS
Single-cell RNA-seq methods and validation with qPCR
We performed all experiments using cultured HCT116 cells 
to minimize heterogeneity among single-cell experiments. 
We made a total of 102 single-cell RNA-seq libraries using 
two tube-based methods (6 libraries) and one microfluidic 
method (96 libraries): (i) the SMARTer Ultra Low RNA Kit 
(Clontech) for cDNA synthesis18 (ii) the TransPlex Kit (Sigma-
Aldrich)19  and (iii) SMARTer cDNA synthesis using the C1 
microfluidic system (Fluidigm), all followed by Nextera library  
construction (Illumina) in standard tube format (Fig. 1a and 
Supplementary Table 1). To obtain a benchmark for com-
parison, we also made libraries from bulk RNA generated from  
1 million HCT116 cells using both SuperScript II reverse tran-
scriptase (Invitrogen) and SMARTer. We sequenced tube-based 
libraries using Illumina HiSeq, obtaining >26 million raw 
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reads for each. The 96 microfluidics-
based libraries were barcoded, and two 
pooled samples of 48 libraries were each 
sequenced on a HiSeq lane (for a total of 
two lanes for all 96 libraries), resulting 
in an average of 2 million raw reads per 
library. We also constructed seven tube-
based single-cell RNA-seq libraries using 
Ovation (NuGEN v.1)20, which was fol-
lowed by library construction with both 
Nextera and NEBNext (New England 
BioLabs) (Supplementary Fig. 1).

Currently, qPCR is considered the gold 
standard for validating gene expression 
studies16,17. Although authors of some 
previous studies have validated their RNA-
seq results by confirming the presence of 
transcripts of interest using targeted qRT-
PCR10,21–23, none has demonstrated quantitative correlation of 
multiple genes between the two methods. Therefore, we per-
formed single-cell multiplexed qPCR on HCT116 cells to measure 
expression of 40 genes curated from previous studies, with some 
genes known to be highly expressed and others known not to be 
expressed in this cell type1, in order to benchmark the accuracy 
of RNA-seq against qPCR. A total of 457 single cells were assessed 
using qPCR, of which 273 were FACS sorted individually into well 
plates for cDNA synthesis. The other 184 were captured using the 
C1 microfluidic system, and cDNA synthesis was performed in 
the microfluidic device (Fig. 1a).

Reproducibility and accuracy of single-cell RNA-seq
We assessed the reproducibility of each single-cell RNA-seq 
method in two ways. The first was by comparing the number 
of genes detected in all combinations of replicate sample pairs 
prepared with the same method to the mean total number of 
genes detected using that method (Fig. 1b). For bulk samples, this 
reflects technical variation, whereas for the single-cell samples it 
combines technical variation with biological variability between 
cells, which can be substantial. Single-cell reproducibility varied 
between 57% and 65%, depending on the method used.

The second way was by comparing the levels of External 
RNA Controls Consortium (ERCC) exogenous spike-in mRNA 
sequences detected in four randomly selected single-cell samples. 
These sequences were added to each sample before cell lysis on the 
C1 platform and were subjected to the same amplification condi-
tions as the cellular mRNA. The spike-ins reflect a diverse range of 

sequence content and length, have low homology with eukaryotic 
transcripts and span a large range of concentrations. The pair-
wise correlation of transcript abundance was >0.9 (Pearson cor-
relation coefficient) for all comparisons among the four samples 
(Supplementary Fig. 2), indicating a high level of reproducibility 
among samples generated by the C1 platform.

We determined sensitivity by calculating how many genes were 
detected by each single-cell method compared to bulk RNA-seq 
(Fig. 1c), computed as average percentages in a pairwise man-
ner (Online Methods). C1 displayed higher sensitivity than 
other single-cell methods, detecting ~42% of genes picked up 
by bulk RNA-seq with no amplification (bulk SuperScript) and 
~44% of genes detected by bulk RNA-seq using the same cDNA 
synthesis kit (bulk SMARTer) (Fig. 1c). Reproducibility on the 
C1 platform was also high (Fig. 1b), though high sensitivity and 
reproducibility were not always associated: the Ovation method 
with Nextera library construction was the most reproducible 
over several replicates, but it had low sensitivity (Supplementary  
Fig. 1). The bulk RNA measurements are technical replicates; 
therefore, the number of genes consistently detected among repli-
cates is high. The variability within single-cell samples is expected 
to be higher, as each single cell is a biological replicate, and bio-
logical noise in gene expression contributes to the variation.

To evaluate accuracy, we compared the expression values of 40 
genes generated by single-cell qPCR and RNA-seq (Fig. 2). Because 
it is challenging to obtain absolute expression values with either 
method, we calculated gene expression relative to the median 
expression across all transcripts for each cell (Online Methods). 
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Figure 1 | Initial validation of single-cell RNA-
seq methods. (a) Schematic of the experimental 
strategy. (b) Reproducibility, as evaluated by 
the percentage of genes detected in pairs of 
replicate samples out of the mean total number 
of genes detected in this pair of samples.  
(c) Sensitivity, as evaluated by overlap  
between genes detected by single-cell and 
bulk RNA-seq measurement. Bulk values listed 
exclude the overlap values. Percentages are 
calculated as the number of genes detected in 
both relative to the number of genes detected 
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The resulting dimensionless numbers should be independent of 
the method used to measure them and can be compared directly 
to determine the accuracy of the measurements. Expression values 
from qPCR and RNA-seq correlated well for all single-cell meth-
ods (r > 0.84), confirming that single-cell RNA-seq methods are 
able to detect gene expression in a quantitative manner consistent 
with existing gold standards. The standard error was small relative 
to the expression level of each gene (Fig. 2).

Interestingly, the correlation coefficients and slopes of the lin-
ear regressions varied among methods. The correlation coeffi-
cients suggest that each method is able to reproduce expression 
measured by qPCR to some degree, whereas the slopes indicate 
some distortion. Notably, performing the sample preparation in 
nanoliter volumes (C1 system) generated a regression slope that 
was almost 1, which indicates the highest absolute accuracy. One 
likely explanation is that reducing the volume of the reaction 
chamber increases the effective concentration of the reactants and 
reduces competition for enzymes between template and nonspe-
cific molecules or contaminants, thus minimizing amplification 
bias24. However, lower bias could also be a result of more uniform 
reverse transcription or more efficient template switching during 
reverse-transcription PCR.

Comparison between nanoliter and microliter reactions
We directly compared microliter with nanoliter sample prepa-
ration, and found that for both qPCR and RNA-seq, samples 
prepared in nanoliter volumes yielded fewer false positives. For 
example, on the basis of previous results with cells of this line-
age1, CA1 and AQP8 had sporadic false positive signals in the 
tube-based qPCR data but were clean in the C1 data (Fig. 3a). 
Furthermore, RNA-seq on the C1 picked up genes that were not 
detected very strongly or consistently by RNA-seq in microliter 
reactions. CD47, a surface marker that is upregulated in cancers 
to evade phagocytosis25–27, was barely detectable in microliter-
volume RNA-seq but was obvious in nanoliter volume (Fig. 3b). 
The nanoliter-volume data are consistent with functional stud-
ies demonstrating the presence of CD47 protein on the surface 
of HCT116 cells27 (Supplementary Fig. 3). Positive controls 
GAPDH and ACTB showed a surprisingly wide distribution in 
microliter-volume samples, spanning several orders of magni-
tude, whereas C1-generated distributions for these genes were 
consistent with qPCR data and the distribution of other genes. 
We also noted that one of the low-expression genes, TERT, was 
detected by only qPCR (Fig. 3). This result may be due to the 

relatively low sequencing depth (an average of ~2 million total 
raw reads per cell) for these libraries.

The C1 platform appears to confer several advantages over tube-
based preparations, including lower false positives and reduced 
bias. The narrower distribution of expression values for qPCR 
indicates it provides higher precision than single-cell RNA-seq, 
independently of preparation volume. A clustering analysis of 
gene expression across the measurement approaches is shown in 
Supplementary Figure 4.

We have also assessed the transcript coverage, length bias and 
GC bias of these samples by looking at the range and level of 
correlation between transcript expression (FPKM values, or frag-
ments per kilobase of exon model per million mapped reads) 
and GC fraction and length (Supplementary Fig. 5). There was 
no systematic bias for GC content or transcript length in the 
microfluidically prepared samples as compared to the bulk RNA  
samples (Supplementary Fig. 5a,b). Coverage over the full 
length of the transcript was more uniform for single-cell sam-
ples prepared using the C1 and the bulk sample prepared using 
SuperScript. Other single-cell samples prepared in tube format,  
using SMARTer and TransPlex, showed a large 3′ end bias, 
with coverage declining rapidly with distance from the 3′ end 
(Supplementary Fig. 5c). The coverage profile for tube-based 
SMARTer is similar to that observed by Ramsköld et al.14.

Nanoliter-volume sample preparation reduces bias
To assess bias on the C1 platform, we examined the correlation 
between the known ERCC spike-in concentrations and their levels 
measured by RNA-seq (Supplementary Fig. 6a). The spike-in 
sequences span a large range of concentrations to allow empiri-
cal determination of the limit of detection28,29. We found that 
C1 experiments gave good correlations, even at concentrations 
below one molecule per chamber; this is possible because the 
results are averaged over all 96 chambers in the C1 chip. Our data 
show that ERCC spike-ins at a level of one molecule per chamber 
have a corresponding FPKM value of approximately 1. As deter-
mined by Poisson statistics, at a concentration of one molecule 
per chamber, the expected fraction of non-empty chambers is 
~0.64; empirically, ERCC spike-in transcripts at this concentra-
tion were detected at ~0.40 fraction using the C1 platform. This 
indicates that the ‘quantum efficiency’ of amplification and detec-
tion of a single molecule in the C1 is about ~0.63 (Supplementary 
Note). In comparison, previous single-cell transcriptome analyses 
reported a detection rate of ~0.25–0.30 (ref. 12).

Figure 2 | Correlation between single-cell 
RNA-seq and single-cell multiplexed qPCR for 
each sample preparation method. Correlation 
coefficients were computed from log2-
transformed values. A linear regression line 
(color) and the y = x line (black, dotted)  
are also shown in each panel. Shading 
represents the 95% confidence interval for  
each regression line. For RNA-seq data,  
FPKM values for each of gene of interest  
were normalized to the median FPKM for  
each cell and log2 transformed. For qPCR  
data, threshold cycle (Ct) values for each  
gene of interest were normalized to the median Ct value for each cell (∆Ct), which also represents a fold change over the median expression. ∆Ct values 
are already in log2 space and were directly plotted. Error bars, standard error (n values as in Fig. 1a).
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Combining single-cell data recapitulates bulk RNA profile
We created a synthetic ensemble data set by computationally 
pooling raw reads from all the single-cell RNA-seq data to mimic 
a bulk RNA-seq experiment. The correlation between the true 
bulk gene expression and the single-cell ensemble was remarkably 
high (Fig. 4a); there was little distortion as demonstrated by the 
Loess regression curve being virtually linear with a slope close 
to 1 in this regime, and the Pearson correlation coefficient was 
0.870. This analysis confirmed that an ensemble of single cells 
indeed recapitulates the bulk11. However, it is worth noting that 
the opposite is generally not true: bulk measurements cannot be 
used to accurately infer ‘typical’ single-cell expression values, nor 
can they be used to infer the variation in expression value from  
cell to cell (T.K., P.D., S.S., M.F.C. and S.R.Q., unpublished data).

Next we examined variation among RNA-seq replicates by 
looking at how dispersion about the median FPKM depends on 
median gene expression for each method (Fig. 4b). In general, 
genes with low expression levels exhibited greater variation, and 
the degree of variability was gene dependent. But as expression 
level increased, the amount of variation decreased, presum-
ably because genes with high expression are also those that are 
expressed stably. Low-expression genes that were reliably detected 
with low variation among replicates were only found in bulk RNA-
seq and synthetic ensemble data sets. Interestingly, despite the 

uniform behavior of ERCC spike-ins (Supplementary Fig. 6b), 
inter-replicate variation among individual C1 single-cell data 
sets appeared to monotonically decrease with gene expression 
level; that is, low-expression genes always had a high intersample  

a

b

ACTB

F
ol

d 
ov

er
 m

ed
ia

n 
ex

pr
es

si
on

 (
lo

g 2)
, q

P
C

R
F

ol
d 

ov
er

 m
ed

ia
n 

ex
pr

es
si

on
 (

lo
g 2)

, R
N

A
-s

eq

CDCA7

MS4A12

SPDEF SPINK4 STMN1 TCF7L1

C1 (nanoliter, n = 368) Tube (microliter, n = 273)

C1 (nanoliter, n = 96) Tube (microliter, n = 13)

TCF7L2 TERT TFF3 TOP2A TSPAN6 USP16

SPDEF SPINK4 STMN1 TCF7L1 TCF7L2 TERT TFF3 TOP2A TSPAN6 USP16

MUC2 MYC NOTCH2 OLFM4 PHLDA1 PTPLAD1PTPRO SEC62 SLC26A3

MS4A12 MUC2 MYC NOTCH2 OLFM4 PHLDA1PTPLAD1PTPRO SEC62 SLC26A3

CFTR CLDN1 FSCN1 GAPDH GUCA2B ITGA6 LGR5 METTL3 MLLT10

CDCA7 CFTR CLDN1 FSCN1 GAPDH GUCA2B ITGA6 LGR5 METTL3 MLLT10

5

–5

0

5

–5

0

5

–5

0

5

–5

0

5
10

–5
0

5
10

–5
0

5
10

–5
0

5
10

–5
0

ANLN AQP8 BIRC5 BMI1 BMP2 BMPR1A CA1 CD177 CD47

ACTB ANLN AQP8 BIRC5 BMI1 BMP2 BMPR1A CA1 CD177 CD47

Figure 3 | Comparison of gene expression distributions for 40 genes 
between samples prepared in microliter and nanoliter volumes.  
(a) Frequency distribution of expression values from single-cell qPCR 
shown as a violin plot for each gene. Expression (vertical axis) is the  
log2-transformed fold change over median gene expression level for  
each sample. Width of the violin indicates frequency at that expression 
level. (b) Frequency distribution of expression from single-cell RNA-seq. 
Violin plots are presented as in a.

10

5

0

–5

–10

–10 –5
C1 ensemble gene expression (median FPKM, log2)

Gene expression (median FPKM, log2)

Spearman r = 0.894a b
Pearson r = 0.870

B
ul

k 
R

N
A

 g
en

e 
ex

pr
es

si
on

 (
m

ed
ia

n 
F

P
K

M
, l

og
2)

0 5 10

1.5

Bulk RNA
SuperScript

1.0

0.5

0

M
ed

ia
n 

ab
so

lu
te

 d
ev

ia
tio

n/
m

ed
ia

n

Bulk RNA
SMARTer

Single-cell C1
individual

Single-cell C1
ensemble

Single-cell
SMARTer

Single-cell
TransPlex

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Figure 4 | Merging many single-cell transcriptomes quantitatively recreates the bulk measurement. (a) Correlation between the merged single cells 
(“ensemble”) and the bulk RNA-seq measurement of gene expression. The ensemble was created by computationally pooling all the raw reads obtained 
from the 96 single-cell transcriptomes generated using the C1 system and then sampling 30 million reads randomly. The bulk and ensemble libraries 
were depth matched before alignment was performed. For each gene, the log2-transformed median FPKM values from the ensemble and bulk were plotted 
against each other. (b) Variation in gene expression as a function of gene expression level across sample replicates for each preparation method. 
Variation (vertical axis) is the median absolute deviation of the FPKM divided by the median FPKM (MAD/M; see Online Methods for the equation).  
For each gene, the MAD/M is plotted against the log2-transformed median FPKM value for that gene in order to visualize how variation changes with 
overall transcript abundance. Replicates for single-cell methods are biological replicates, whereas replicates for the bulk and ensemble are technical 
replicates, as each sample represents a subsampling of a pooled sample.

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature methods  |  VOL.11  NO.1  |  JANUARY 2014  |  45

Analysis

variation. This was not seen in the other single-cell methods and 
is perhaps attributable to the sequencing depth of these samples. 
In general, the microfluidic single-cell data had a more well-
defined relationship, with less scatter, between expression level 
and variation than the single cells measured in tubes.

Nanoliter sample preparation improves RNA-seq sensitivity
We constructed saturation curves for each preparation method by 
subsampling the raw reads from each library and determining the 
number of genes detected (Fig. 5). The number of genes detected 
with confidence (FPKM > 1) approached saturation at roughly  
2 million reads for all methods; in fact, the majority of genes were 
detected within the first 500,000 reads—and for most methods, 
>90% of all genes detected at 30 million reads were already detected 
at a sequencing depth of 2 million (Supplementary Fig. 7a).  
There was a large difference in the sensitivity of each method, 
with a wide range of saturation points. The synthetic ensemble 
experiment matched the bulk experiment generated with the 
same method (SMARTer): both reached saturation at 2 million 
sequenced reads at almost identical rates. This again suggests that 
there is less bias when performing cDNA synthesis in smaller 
reaction volumes. With less bias, low-abundance transcripts have 
better representation at lower sequencing depths, and the overall 
assay sensitivity thus improves. Further confirming this hypoth-
esis is the observation that for individual transcriptomes gener-
ated using the microfluidic platform, the average number of genes 
detected at any sequencing depth is higher than with any other 
single-cell method (Fig. 5 and Supplementary Figs. 1 and 7).

DISCUSSION
We used microfluidic automation to quantitatively compare the 
accuracy and precision of single-cell RNA-seq to qPCR. Using two 
distinct methods, each of which has different biases and sources 
of error, enabled us to estimate the absolute accuracy of single-
cell gene expression. Our study shows that single-cell RNA-seq 
can generate results that are quantitatively comparable to qPCR, 
in particular when sample preparation is done in nanoliter-scale 
reaction volumes, as in a microfluidic device. Bias that is typically 
introduced during sample preparation is reduced, and correlation 
further improves. It is not yet clear whether this bias is a funda-
mental limitation of microliter-volume amplification schemes or 
whether with further optimization, these approaches will also 
be able to yield fully accurate transcriptome measurements.  

We expect that the availability of low-bias, high-throughput  
single-cell RNA-seq will make studies of primary tissue involving  
diverse subsets of cell types and hundreds or thousands of  
individual cells routine.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Gene Expression Omnibus: GSE51254. All  
analysis was performed using custom R scripts, available for 
download at http://sourceforge.net/projects/arwu-scrnaseq/files/
C1_hiseq_analysis_for_paper_revision.R/download.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Cell growth and sorting. HCT116 is a human colon cancer cell 
line and can be obtained from the American Tissue-type Culture 
Collection (ATCC; CCL-247). HCT116 cells were maintained in 
RPMI-1640 medium, supplemented with 10% heat-inactivated 
fetal bovine serum, 2 mM l-glutamine, 120 µg/ml penicillin,  
100 µg/ml streptomycin, 20 mM HEPES and 1 mM sodium pyru-
vate. Cells were authenticated by HLA typing and were confirmed 
negative for Mycoplasma contamination using PCR. Cells for  
single-cell qPCR assays using the Fluidigm Biomark were sorted 
into wells of 96-well plates containing 5 µl 2× Cells Direct 
(Invitrogen, Life Technologies) plus 0.4 units/µl Superase In 
(Ambion, Life Technologies) and pre-amplified with pooled 
TaqMan probes (AB, Life Technologies) as previously described1. 
For cDNA synthesis, single HCT116 cells were sorted into the 
wells of 96-well plates (ABgene PCR plates, Thermo Scientific) 
containing 5 µl nuclease-free water (IDT) and 0.4 units/µl 
Superase In (Ambion, Life Technologies). The sealed plates were 
stored frozen at −80 °C.

Single-cell multiplexed qPCR. For the microliter-volume sample 
preparations, Biomark qPCR assays were performed as described 
before1. For the nanoliter-volume sample preparations on the C1 
platform, single HCT116 cells were captured on a microfluidic 
STA chip using the Fluidigm C1, and amplicons were made with 
pooled TaqMan assays1 and Ambion Cells-to-CT lysis and pre-
amplification kit (Life Technologies). A list of the TaqMan assays 
used is found in Supplementary Table 2.

In order to directly compare with RNA-seq data, gene expres-
sion values were calculated relative to the median gene expression 
across all transcripts for each cell. The Ct values for each gene of 
interest were normalized to the median Ct for each cell; unex-
pressed genes with no detectable Ct value were given a value of 
“NA” for computational purposes.

Bulk RNA-seq library construction. Bulk total RNA was prepared 
from ~1 million HCT116 cells using the Dynal mRNA Direct 
kit (Invitrogen) according to the supplier’s recommendations. 
Aliquots of the bulk prep were stored at −80 °C in nuclease-free 
water. Replicates of the bulk prep were made into cDNA libraries 
using two different preparation techniques: (i) SuperScript II RT 
(Invitrogen) for cDNA synthesis with no amplification, followed 
by Nextera library construction (limited cycles of amplification 
to attach sequencing primers), and (ii) SMARTer Ultra Low RNA 
kit with amplification, followed by Nextera library construction. 
For each cDNA synthesis method, the maximum recommended 
amount of RNA was used as input. Bioanalyzer (Agilent) traces 
were used to confirm library size distribution and quantitation.

Single-cell RNA-seq library construction. For the microliter-
volume sample preparations, single cells were sorted into and 
frozen in standard 96-well plates as described above. Wells were 
thawed, and those containing single cells were cut from the plate. 
cDNA synthesis was then performed in an MJ Thermocycler 
according to the supplier’s protocols. Clean-up reactions were 
done with Ampure XP beads (Beckman Coulter Genomics). The 
cDNA synthesis kits compared were NuGEN Ovation RNA Seq 
System (version 1), Sigma-Aldrich WTA2 TransPlex Complete 
Whole Transcriptome Amplification Kit and Clontech SMART 

Ultra Low RNA kit for Illumina Sequencing (Supplementary 
Table 1). Illumina library construction used either the Epicentre 
(Illumina) Nextera DNA Sample Prep kit (Illumina-compatible) 
or New England BioLabs NEBNext DNA library Prep Master Mix 
Set for Illumina combined with Illumina-compatible adaptors and 
PCR primers from IDT. Libraries were quantitated by an Agilent 
Bioanalyzer using the High Sensitivity DNA analysis kit and Kapa 
Biosystems Illumina library Quantitation kit.

For the nanoliter-volume sample preparations on the C1 plat-
form, single HCT116 cells were captured using the Fluidigm C1 
chips using the manufacturers recommended protocol. A concen-
tration of 300,000–350,000 cells per ml was used for chip load-
ing. After cell capture, chips were examined visually to identify 
empty chambers that were excluded from later analysis. cDNAs 
were made on-chip with Clontech SMARTer Ultra Low RNA kit 
for Illumina using manufacturer-provided protocols. External 
RNA Controls Consortium (ERCC) mRNA spike-ins (Ambion, 
Life Technologies) were added to the cell lysis mix instead of the 
manufacturer-provided spike-in controls at a final concentration 
that was 40,000-fold diluted from the stock. ERCC spike-ins were 
introduced to each sample within the cell lysis mix microfluidi-
cally and underwent the same sample preparation as the cell in 
each sample. Detailed information on the ERCC transcripts can 
be found in ref. 28 as well as the supplementary information of 
ref. 29. Illumina libraries were constructed in 96-well plates using 
the Illumina Nextera XT DNA Sample Preparation kit according 
to a protocol supplied by Fluidigm.

DNA sequencing. Sorted single-cell libraries and bulk libraries 
were sequenced 1 × 50 bases on Illumina HiSeq 2000 with repli-
cate libraries of each type in the same lane. Single-cell C1 libraries 
were sequenced 2 × 150 bases in two pools of 48 libraries each.

Sequence alignment and analysis. Raw reads were pre-processed  
with existing sequence grooming tools FastQC (Babraham 
Institute, http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/), Cutadapt30 and Prinseq31, before sequence alignment 
using the Tuxedo Suite (Bowtie32, Bowtie 2 (ref. 33), TopHat34) 
and SAMtools35. FPKM values used for analyses were gener-
ated by TopHat. Where depth matching was done, Seqtk (H. Li, 
https://github.com/lh3/seqtk/) was used to randomly select raw 
reads from each library, and the same pre-processing and align-
ment pipelines were used to obtain FPKM values for the depth- 
matched samples.

To construct the reproducibility bar graphs, we compared pairs 
of samples prepared using the same method to determine the 
number of genes that were detected (FPKM > 0) in both samples 
of the pair. This was repeated for every combination within each 
method, and the average number of genes reproducibly detected 
between pairs was then computed as a percentage of the average 
of the total number of genes detected in each sample. The percent-
age calculated this way is plotted in Figure 1b. For the Venn dia-
grams showing genes found in the single-cell samples that are also 
detected in the bulk, a similar approach was taken: each pairwise 
combination of bulk and single-cell samples was compared, and 
the number of genes lying in the intersection of the two was deter-
mined; then for each single-cell method, the average number of 
genes detected in both samples of the pair was calculated and plot-
ted in the Venn diagram for that single-cell method. Percentages 
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shown in the Venn diagram represents this average divided by the 
average number of genes detected by the bulk samples.

For comparing qPCR with RNA-seq, fragments per kilobase per 
million (FPKM) values and threshold cycle (Ct) values were each 
converted to a differential fold change compared to the median 
expression level for each sample. For RNA-seq data, FPKM val-
ues for each gene of interest were normalized to the median  
FPKM per cell, whereas for qPCR data the Ct values for each 
gene of interest were normalized to the median Ct for each 
cell. R scripts were used to construct violin plots and perform  
hierarchical clustering.

For generating the ‘synthetic ensemble’ single-cell data set, raw 
reads from all the single-cell RNA-seq libraries were bioinformati-
cally pooled to mimic a bulk RNA-seq experiment, resulting in an 
ensemble library of ~186 million reads. For the ‘true’ bulk RNA-
seq, 1 million cells were pooled to generate bulk RNA, and from 
this pool, four samples of 100 ng of RNA each were taken and 
independently made into four RNA-seq libraries and sequenced. 
The total number of reads obtained for the true bulk RNA was 
~131 million reads from four libraries, with each library contrib-
uting ~30 million reads. Subsequently, four samples of 30 million 
raw reads each were taken from the ‘true’ bulk library and the C1-
generated ‘ensemble’ library, and identical read QC and alignment 
pipelines were applied to each subsampled library. For each gene, 
mean FPKM values (i.e., the mean FPKM for that gene over the 
four subsamples from each library) were found for both the true 
bulk experiment and the ensemble experiment, and these values 
were plotted to generate the correlogram (Fig. 5a).

To estimate the variation in the measured gene expression 
as a function of gene expression level across sample replicates, 
we used the median absolute deviation of the FPKM divided by  
the median FPKM. The mean absolute deviation, or MAD, is  
calculated using the following formula:

MAD median mediani= −(| ( ) |)X Xi j j

We chose the median absolute deviation as the measure of sta-
tistical dispersion in this case, over using the s.d. (MAD/median 
rather than coefficient of variation) because the MAD is a robust 
statistic and is more resilient to outliers than the s.d.36. For  
single-cell statistics, owing to transcriptional bursting of indi-
vidual cells, it is very likely that there are outliers in the measured 
gene expression of a set of single cells; the MAD is less influenced 
by such deviations.

Saturation plots were generated by randomly selecting the cor-
responding number of millions of raw reads from each sample 
library and then using the same alignment pipeline to call FPKM 
values for each gene. This random subsampling was repeated for 
each sample replicate a total of four subsampled data sets per 
point, and the mean number of genes with FPKM greater than 0 
or 1 (Supplementary Fig. 7) was plotted. The C1 samples indi-
vidually were sequenced to a depth of only 2 million reads on 
average; therefore, no data points beyond 2 million reads were 
created for those samples.
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