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The transcriptomics field has developed rapidly with the

advent of next-generation sequencing technologies. RNA-seq

has now displaced microarrays as the preferred method for

gene expression profiling.The comprehensive nature of the

data generated has been a boon in terms of transcript

identification but analysis challenges remain. Key among

these problems is the development of suitable expression

metrics for expression level comparisons and methods for

identification of differentially expressed genes (and exons).

Several approaches have been developed but as yet no

consensus exists on the best pipeline to use.De novo

transcriptome approaches are increasingly viable for

organisms lacking a sequenced genome. The reduction in

starting RNA required has enabled the development of

new applications such as single cell transcriptomics.The

emerging picture of mammalian transcription is complex

with further refinement expected with the integration of

epigenomic data generated by projects such as

ENCODE.
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Introduction
Transcriptomics — one of the original ‘omics

The ‘transcriptome’ is defined as ‘the complete comp-

lement of mRNA molecules generated by a cell or popu-

lation of cells’. The term was first proposed by Charles

Auffray in 1996 [1] and first used in a scientific paper in

1997 [2]. Unlike many of the technologies that have

acquired the ‘-ome’ appendage the ‘Transcriptome’ has

a long pedigree and certainly meets the requirements of a

true ‘omics technology [3].

The last couple of years have seen intense development

of transcriptomic applications and the supplanting of

microarrays by RNA-seq as the technology of choice

for gene expression analysis. However the amount of data
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generated by these technologies has generated problems

both of data management and storage as well as posing

novel analytical problems.

Although the transcriptome can encompass many species

of RNA (miRNA, snoRNA, etc.) this review will focus

mainly on mRNAs, specifically mammalian mRNAs.

Readers can find good reviews of the advances that have

been made in nonmammalian and noneukaryotic tran-

scriptomics in other locations [4,5].

In contemporary multidisciplinary projects global tran-

scription profiling is frequently the first ‘omics technology

to be applied. It generates information about which genes

are expressed, at what level and can also provide infor-

mation about different transcript isoforms used. A pre-

liminary analysis via microarray or RNA-seq can indicate

the appropriateness or usefulness of other ‘omics tech-

nologies such as proteomics, glycomics or metabolomics.

It can be a relatively cheap way of determining the likely

interesting subsets of samples that are likely to generate

results in other ‘omics technologies. It can also be used to

indicate modifications of capture protocols which should

be for technologies such as proteomics; where the bio-

chemical idiosyncrasies of particular proteins or protein

families can make it difficult to isolate proteins or metab-

olites which the RNA-seq data have indicated to be of

potential interest.

One example of this type of multidisciplinary approach

can be found in our own work. For the past five years

our reproductive biology cluster has been profiling

different tissues of the female bovine reproductive tract

under different conditions of pregnancy status, stage of

estrus cycle or embryo development. In each case the

initial RNA-seq experiment is then complemented by

additional profiling with proteomics, metabolomics, or

glycomics. Each ‘omics technology helps to piece

together a complex biological picture for example;

how the endometrium tissue can support embryo

growth and implantation (proteomics analysis of histo-

troph [6] following RNA-seq of endometrium [7] and

embryo [8]), how enzymes expressed in follicular

tissue can support the development of oocytes before

ovulation (RNA-seq of theca and granulosa cells [9]

followed by metabolomic profiling of follicular fluid

[10]) or to determine exactly how the modulation of

glycosylation enzymes impact on cervical mucus

structure and generate a permissive or hostile

environment for sperm or bacterial transit (glycomic

profiling of cervical mucus following RNA-seq of

cervical tissue [11]).
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Glossary

cDNA: Complementary DNA is synthesized from mRNA using

reverse transcriptase. This is the starting material typically used in

nextgen sequencing or gene expression microarray protocols for

measuring RNA levels.

De novo assembly: Constructing a transcriptome in the absence of

an assembled genome sequence for the organism.

DGE: Digital Gene Expression. An alternative protocol for measuring

gene expression. It is a version of the SAGE protocol adapted for use

with next-generation sequencers.

ENCODE: Encyclopedia of DNA elements. A research consortium

whose goal is to identify the functional elements in the human

genome.

EST: Expressed Sequence Tag. A subsequence of a cDNA

sequence. Generated with earlier generations of DNA sequencers

(Sanger sequencing method).

Microarray: Expression microarrays are collection of DNA spots

(probes) attached to a solid surface. These probes hybridize to cDNA

reverse transcribed from RNA samples. Levels of hybridization are

measured using fluorescence and converted into expression

measurements.

mRNA: Messenger RNA. An RNA product that is transcribed from the

DNA and ultimately transported to a ribosome where it is translated

into protein.

miRNA: Micro-RNA, a short RNA (�22 bp when fully processed)

which can bind complementary sequences on target mRNAs resulting

in translational repression or mRNA degradation.

Read: A sequence of DNA bases generated by a sequencer. Early

Illumina/Solexa sequencing generated single-reads 100’s of millions

of 18 bp in length. Current GA2 and HiSeq machines can generate

paired reads of up to 150 bp in length. Reads can be generated either

from one end of a DNA fragment (single-read) or from both ends

(paired-end reads). The paired-end reads can have advantages for

splice isoform reconstruction in RNA-seq.

RNA editing: Molecular process where sequence of an RNA

molecule is altered after transcription. In mammals A-I (adenosine to

inosine) is the most common form of editing.

RNA-seq (or mRNA-seq): The most popular protocol for measuring

RNA levels using nextgen sequencing. Typical steps involve poly-A

selection, reverse transcription into cDNA, fragmentation to desired

size followed by ligation of the sequencing primers. The protocol can

be either strand-specific (retaining information about the directionality

of the original transcript) or nonstrand-specific depending on the

protocol used.

SAGE: Serial Analysis of Gene Expression. A technique used to

measure gene expression. Involves isolation of poly-A RNA, digestion

of the RNAs using a restriction enzyme and sequencing of the

resulting short tags.

snoRNA: Small nucleolar RNAs. A class of small RNAs that

chemically modify other RNAs.

Transcriptome: The complete complement of mRNA molecules

generated by an organism or cell type.
Main text
Brief history of transcriptomics

The first efforts at profiling mammalian transcriptomes

started in 1991 with the publication of a human EST

database compiled by a group from the NIH led by J.

Craig Venter [12]. This database consisted of just 609

cDNA clones with an average length of 397 � 99 bases. It

represented one of the earliest applications of the then

newly developed automated Sanger sequencing technol-

ogy. This technology enabled methods such as SAGE

(Serial Analysis of Gene Expression) which were one of
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the first attempts to attempt to quantify gene expression

on a global basis [13]. The first SAGE publication con-

tained just 1000 manually sequenced 9 base tags (or 13

bases with 4 inferred from the restriction enzyme clea-

vage site). At almost the same time the first microarray

publications emerged [14]. Microarrays (single color and

dual color) utilizing complementary probe hybridization,

quickly became the technologies of choice for transcrip-

tion profiling and came to dominate the field for the next

decade.

The recent revolution in sequencing represented by

short-read (otherwise known as 2nd generation or next-

generation) technologies has enabled the sequencing

approach to leap ahead of the microarray approach once

again. In 2006 the first RNA-seq paper was published

utilizing 454/Roche technology [15]. The data generated

comprised just 200,000 reads of length 110 bp for a total of

20 Mbases of data. However for sequencing approaches to

be successful a lot of sequencing is needed (the more the

better) and it was not until the advent of greater through-

put that RNA-seq was able to compete with microarrays.

The era of RNA-seq dominance began in earnest in 2008

with a trio of papers utilizing the new short-read tech-

nology developed by Solexa (now Illumina) [16–18].

From the outset the Illumina/Solexa technology has

generated gigabases of data per run (initially 1 GB per

run for the Genome Analyzer when it was initially

released in 2006 rising to 600 GB per run for the HiSeq

2500 as of 2012). While the Roche/454 technology has

always generated reads long enough for RNA-seq it has

been hampered by the relatively low throughput and high

cost of the libraries compared to the more popular Illu-

mina technology.

Early transcriptomic projects utilized scaled up versions

of SAGE, that is, Digital Gene Expression (DGE), which

made a virtue out of the necessarily short (18 bp) reads

available when the Solexa machines were first introduced.

The DGE protocol was quickly abandoned for mRNA-

seq as soon as longer read lengths (�25 bp) enabled

unique mapping of randomly fragmented cDNA reads

to a mammalian genome.

Recent technological advances

The most popular technology for RNA-seq has been the

Illumina Genome Analyzer and Hi-Seq (http://www.illu-

mina.com/technology/sequencing_technology.ilmn).

Illumina sequencing technology has steadily increased

read length and overall number of reads generated per run

since its introduction in 2007. The first cohort of mRNA-

seq papers used short single reads of 25–40 bp whereas a

contemporary project will typically utilize long paired-

end strand-specific reads [19]. These longer paired-end

reads enable higher levels of mappability. They also

enable better identification and mapping of spliced reads

[20] as well as enabling the assembly of transcriptomes in
Current Opinion in Chemical Biology 2013, 17:4–11
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the absence of a reference genome using de novo assembly

approaches (see below).

Some concern has existed over the impact of PCR ampli-

fication on the accuracy of gene expression quantitation

via RNA-seq. The Helicos sequencer [21] used an ampli-

fication free technology and some of the 3rd generation

sequencers are also amplification free (PacBio and Ion-

Torrent). There are also methods (such as FRT-Seq [22])

that can be used with the Illumina sequencer that also

avoid amplification. The failure of the protocols like

FRT-Seq or technologies such as the Helicos sequencer

to gain widespread adoption can probably be attributed to

the development of strand-specific paired-end protocols

which seem to have effectively nullified the problem of

amplification bias [22].

Researchers looking to keep abreast of developments in

sequencing technology and related bioinformatics

analysis problems should consult the excellent

Seqanswers website [23].

Bioinformatics challenges
The first major bioinformatics problem posed by the

emergence of RNA-seq was the alignment of the reads

to a reference genome. Given that the number of reads in

a RNA-seq sample can be of the order of millions (even

tens of millions) alignment speed has been the primary

performance metric by which these tools have been

judged. This has led to the displacement of the original

cohort of aligners by tools based on the Burrows Wheeler

Transform such as Bowtie [24] and SOAP [25].

The early years of microarray analysis were dogged by

the analytical problems of high dimensionality, probe

cross hybridization and difficulties determining appro-

priate normalization and differential expression strat-

egies. However consensus analysis approaches

eventually emerged [26]. Next-generation sequencing

has solved some of the problems associated with micro-

arrays while at the same time posing new ones. Probe

hybridization is not a feature of RNA-seq, but the

misalignment of reads to closely related genes can lead

to a phenomenon called ‘transcript shadowing’ [27,28].

Similarly the requirement for sample normalization and

bias correction has not been eliminated [29–31]

although it is arguably much reduced compared to

microarrays. At a minimum some normalization must

be carried out to account for the different sequencing

depths in each library. To this end existing metrics

from SAGE analysis such as Tags/Transcripts per

million (TPM) and new metrics such as RPKM [16],

FPKM [27], per-lane upper quartile correction metric

(UQUA) [32], and trimmed mean of M values (TMM)

[33] have been developed to compare expression levels

both between and within samples. In many cases the

simpler TPM metric is sufficient [34].
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Batch processing problems previously associated with

microarrays were detected among some of the early

RNA-seq datasets [35]. However the prudent application

of indexing/multiplexing strategies can mitigate many of

these problems. Usually RNA-seq technical replicates

(same library different lane/flowcell) are so similar as to

be capable of being combined via summation [32].

The count nature of the next-generation data has necessi-

tated the development of new algorithms (or rediscovery

of SAGE analysis techniques) to accurately estimate

differential expression. The early RNA-seq papers fre-

quently used the Poisson model to identify differentially

expressed genes. This approach has increasingly been

recognized as inappropriate. The most commonly used

methods have been parametric methods utilizing variants

of the negative binomial distribution such as edgeR [36],

HTseq [37], bayseq [38], and NBPseq [39]. Nonpara-

metric methods such as NOISeq [40] and Samseq [41]

and expectation–maximization methods such as RSEM

[42] have also been applied to this problem. The Fisher

Exact Test (FET) also performs well in some compari-

sons. No consensus has yet emerged as to the best

algorithm or pipeline to use [32].

One factor that can confound the identification of opti-

mum analysis strategies is the rapid development of the

sequencing chemistries. Most of the reference datasets

(e.g. Marioni [43] and MAQC datasets [32]) were gener-

ated using early versions of the Illumina chemistry. It is

likely that some of the biases identified in these early

datasets are no longer present — potentially replaced by

new ones.

The last two years has seen the standardization of the

SAM/BAM format for short-read alignment data [44].

This standardization has eased the adoption of genome

browsers such as the Integrative Genomics Viewer (IGV)

from the Broad Institute which enable the rapid graphical

navigation of raw RNA-seq data in their genomic context

[45]. These tools can be very helpful for interpretation of

results and visual identification of potential artifacts.

Splicing

Although the earliest RNA-seq papers identified novel

splicing variants the difficulties of alignment, transcript

assembly, and annotation have meant that analysis of

differential splicing has not yet become routine. Never-

theless it has been shown that different tissues are a key

source of differential splicing/differential exon usage [46].

Longer, paired-end, strand-specific [47] reads have

enabled easier mapping of reads overlapping spliced

junctions and enabled easier linkage of novel exons to

known gene models. More robust methods for determin-

ing differential splicing building on differential transcript

expression analysis have also recently emerged [48,49].
www.sciencedirect.com
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Data repositories

The orders of magnitude difference in size between the

raw data from a RNA-seq experiment compared to a

microarray experiment present technical and economic

challenges particularly for data repositories (which notably

passed the 1 million dataset milestone this year [50]). One

method to reduce this problem is the application of ‘lossy’

data compression strategies for short-read data such as the

CRAM file format [51]. Other approaches such as refer-

ence-based compression [51] as well as the utilization of

probabilistic data structures have also been demonstrated

[52]. As the expense of data storage mounts it is likely that

these formats will see higher levels of adoption.

Distinguishing novel biology from technical artifacts

The sheer size of RNA-seq datasets coupled with

systemic read errors can pose problems for naı̈ve analysts

exploring the frontiers of this type of data. The highest

profile example of this type of problem was seen in the

recent controversy about the scope of RNA editing in

mammalian cells [53] but it has also been cited in relation

to the identification of gene imprinting [54] using RNA-

seq. This category of problem has even resulted in the

coining of a new ‘law’ viz MacArthur’s Law: ‘interesting

results are more likely to be artifacts — even after

accounting for MacArthur’s Law’, named after the

researcher who has been the most prominent in publiciz-

ing this problem [55]. Just as with RNA editing and gene

imprinting, RNA-seq also has the capability to identify

eQTLs as well as allele specific expression (ASE) via the

use of expressed SNPs (eSNPs) [56]. As with RNA

editing these types of analysis will require careful filtering

of sequencing artifacts.

A problem of potentially much wider impact is the dis-

covery that global transcriptional amplification by c-MYC

can increase the overall RNA pool in a cell thus under-

cutting one of the unspoken assumptions of global tran-

scriptome analysis [57]. Alternative protocols that spike in

RNA calibrated to cell number or DNA content have

been proposed to correct for this effect. The extent to

which this will force reconsideration of previous expres-

sion studies is as yet unclear.

New applications of RNA-seq

De novo transcriptomics

Of particular interest to researchers working on organisms

where no reference genome exists has been the devel-

opment of de novo methods to characterize the transcrip-

tome. Popular assembly methods include Oases [58],

Trinity [59], and trans-ABySS [60]. Most of these

methods rely on the de Bruijn graph data structure. This

data structure lends itself naturally to genomic and tran-

scriptomic data and saw one of its’ first bioinformatics

applications in EST assembly [61]. While the de novo
tools are still outperformed by genome-guided methods

they perform well for highly expressed transcripts and will
www.sciencedirect.com 
benefit from the use of longer reads and increased

sequencing depth as sequencing costs reduce (Figure 1).

One limitation of current de novo assemblers is lack of

robustness to base miscalls. Crucial read preprocessing

steps have been identified for accurate transcriptome

assembly. These steps typically involve quality score-

based trimming and filtering using tools such as EA-utils

[62] and the FASTX-toolkit (http://hannonlab.cshl.edu/

fastx_toolkit/) and filtering or trimming reads containing

low frequency kmers using tools such as khmer [63].

All of the de novo assembly algorithms are highly memory

intensive. New algorithmic approaches will be required to

reduce reliance on large shared memory machines when

using these tools.

Single cell transcriptomics

RNA-seq has enabled the profiling of samples from very

small amounts of starting material. This has been a boon

for applications such as single cell transcriptomics [64]

enabling detailed profiling of: the early embryo transcrip-

tome [65], single neuron transcriptome [66], and periph-

eral circulating tumor cells [67].

Beyond mRNA-seq — new applications in the

transcriptomic ecosystem

The cellular biology surrounding the transcriptome has

seen a similar proliferation in -seq and ‘omic approaches.

These have been concentrated in the area of the epigen-

ome — or how DNA and histones are modified to control

gene expression patterns (see ENCODE below) as well

as in the layers of regulation between transcription and

translation. Applications such as CLIP-seq [68] profile

RNA binding profiles. Ribosome profiling or Riboseq [69]

has enabled the first genome wide surveys of exotic

phenomena such as dually decoded regions where alter-

nate protein products are produced based on translation

frameshifts [70]. Specialized protocols have also been

developed to sequence the small RNA population of

the cell (miRNAs, snoRNAs, etc.) [71].

The availability of orthogonal transcriptomic and proteo-

mic datasets has enabled the measurement of the linkages

between RNA and protein levels in individual samples.

The results of these analyses show that the transcript and

protein levels of an individual gene vary quite dramatically.

One estimate was that only 40% correlation exists between

the transcript and protein level of genes overall [72]. These

results suggest caution when attempting to project results

from the transcriptomic domain into the proteomic.

Epigenetic control of the transcriptome — the ENCODE

project

The complexity of mammalian transcription is dictated

by the differential expression of different genes or iso-

forms in different tissues. These patterns of expression
Current Opinion in Chemical Biology 2013, 17:4–11
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Figure 1
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are reflected in the chromatin state (epigenetic state) of

the cell and the accessibility of the DNA control regions

of different genes to the various transcription factors that

are present.

Until recently most of these regulatory elements have been

unidentified. A project in the forefront of identifying them

has been the ENCODE project. This project aims to

catalog and dissect the functional noncoding elements of

the human genome [73,74]. The initial phase of the project

focused on just 1% of the genome and utilized primarily

array-based technologies. The full-scale project aims to

profile these elements across the entire genome and in

multiple cell lines and has pioneered the use of various -seq

approaches (ChIP-seq, DNase-seq, FAIRE-seq, etc.).

While the data generated by ENCODE are recognized

as being of great utility, their claim that 80% of the human

genome has a specific biological function [75] has been

greeted with much skepticism [76].

Already the results of the initial phase of the ENCODE

project have led to an evolution in the definition of a gene

[77]. It also showed that the majority of the nonrepetitive

genome is transcribed under some circumstances [74].

Several novel types of transcription occurring in the

vicinity of mRNAs were identified, that is, PASR/TASR,

TSSa-RNA, tiRNA [78] corresponding to promoter/

terminator associated RNAs, transcription start site

associated and transcription initiation RNAs respectively.

Other types of noncoding RNAs (such as lincRNAs [79])

have also been identified. These have the potential to

complicate RNA-seq analyses and frustrate automated

annotation algorithms. However the functionality of

much of these novel transcripts, especially low abundance

intergenic transcripts, have been called into question [80]

especially with the well known lack of specificity of the

Pol2 enzyme [81].

The recently produced atlases of regulatory elements in

different tissues and cell lines for the mouse [82] and

human [83] are good examples of the use of ENCODE

type regulatory datasets. It is likely that similar atlases

will be developed for other organisms in the years ahead

and they will be important for our understanding of

transcription control — that is, not just what genes are

expressed but why they are expressed.

The future — application of 3rd generation sequencing

technologies

While the Illumina GA and HiSeq sequencers currently

dominate the transcriptomic landscape, the last two years

has seen the development of the basic sequencer in several

directions: that is, speed of data generation and length of

reads generated. These improvements have come about

both by modification of existing sequencing technologies

(i.e. MiSeq) and new sequencing technologies (PacBio and

IonTorrent/PGM). The long reads generated by PacBio
www.sciencedirect.com 
could be very useful in hybrid approaches to de novo
transcriptomics, similar to how it can be used in hybrid

approaches to de novo genome assembly [84].

Conclusions
Five years into the next-generation sequencing revolu-

tion RNA-seq has been widely adopted and has effec-

tively displaced microarrays for gene expression analysis.

Unfortunately RNA-seq has not been the panacea to the

problems of gene expression analysis that some may have

hoped: artifacts and biases exist that still need to be

identified and controlled for.

The last two years has seen an explosion of RNA-seq

analysis approaches. The next few years will hopefully

see consensus emerge on the best analysis pipeline.

However the real advantages to RNA-seq has been in the

new applications it has enabled: opening up the tran-

scriptome of nonmodel organisms and exposing the full

complexity of the mammalian transcriptome much of

which was hidden from microarrays.

The future will see the further integration of transcrip-

tomics with other –omic technologies providing a more

complete understanding of how individual cells and

different tissue types are organized and controlled.

One thing that will not change is the fact that the analysis

of the transcriptome by any technology is a challenging

high dimensional biological problem and will remain so.
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