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Abstract

Cell-to-cell variation is a universal feature of life that impacts a wide range of biological 

phenomena, from developmental plasticity1,2 to tumor heterogeneity3. While recent advances have 

improved our ability to document cellular phenotypic variation4–8 the fundamental mechanisms 

that generate variability from identical DNA sequences remain elusive. Here we reveal the 

landscape and principles of cellular DNA regulatory variation by developing a robust method for 

mapping the accessible genome of individual cells via assay for transposase-accessible chromatin 

using sequencing (ATAC-seq). Single-cell ATAC-seq (scATAC-seq) maps from hundreds of 

single-cells in aggregate closely resemble accessibility profiles from tens of millions of cells and 

provides insights into cell-to-cell variation. Accessibility variance is systematically associated 

with specific trans-factors and cis-elements, and we discover combinations of trans-factors 

associated with either induction or suppression of cell-to-cell variability. We further identify sets 

of trans-factors associated with cell-type specific accessibility variance across 8 cell types. 

Targeted perturbations of cell cycle or transcription factor signaling evoke stimulus-specific 
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changes in this observed variability. The pattern of accessibility variation in cis across the genome 

recapitulates chromosome topological domains9 de novo, linking single-cell accessibility variation 

to three-dimensional genome organization. All together, single-cell analysis of DNA accessibility 

provides new insight into cellular variation of the “regulome.”

Main

Heterogeneity within cellular populations has been evident since the first microscopic 

observations of individual cells. Recent proliferation of powerful methods for interrogating 

single cells4–8 has allowed detailed characterization of this molecular variation, and 

provided deep insight into characteristics underlying developmental plasticity1,2, cancer 

heterogeneity3, and drug resistance10. In parallel, genome-wide mapping of regulatory 

elements in large ensembles of cells have unveiled tremendous variation in chromatin 

structure across cell-types, particularly at distal regulatory regions11. Methods for probing 

genome-wide DNA accessibility, in particular, have proven extremely effective in 

identifying regulatory elements across a variety of cell types12 – quantifying changes that 

lead to both activation and repression of gene expression. Given this broad diversity of 

activity within regulatory elements when comparing phenotypically distinct cell populations, 

it is reasonable to hypothesize that heterogeneity at the single cell level extends to 

accessibility variability within cell types at regulatory elements. However, the lack of 

methods to probe DNA accessibility within individual cells has prevented quantitative 

dissection of this hypothesized regulatory variation.

We have developed a single-cell Assay for Transposase-Accessible Chromatin (scATAC-

seq), improving on the state-of-the-art13 sensitivity by >500-fold. ATAC-seq uses the 

prokaryotic Tn5 transposase14,15 to tag regulatory regions by inserting sequencing adapters 

into accessible regions of the genome. In scATAC-seq individual cells are captured and 

assayed using a programmable microfluidics platform (C1 single-cell Auto Prep System, 

Fluidigm) with methods optimized for this task (Fig. 1a and Extended Data Fig. 1 and 

Supplemental Discussion). After transposition and PCR on the Integrated Fluidics Circuit 

(IFC), libraries are collected and PCR amplified with cell-identifying barcoded primers. 

Single-cell libraries are then pooled and sequenced on a high-throughput sequencing 

instrument. Using single-cell ATAC-seq we generated DNA accessibility maps from 254 

individual GM12878 lymphoblastoid cells. Aggregate profiles of scATAC-seq data closely 

reproduce ensemble measures of accessibility profiled by DNase-seq and ATAC-seq 

generated from 107 or 104 cells respectively (Fig. 1b,c and Extended Data Fig. 2a). Data 

from single cells recapitulate several characteristics of bulk ATAC-seq data, including 

fragment size periodicity corresponding to integer multiples of nucleosomes, and a strong 

enrichment of fragments within regions of accessible chromatin (Extended Data Fig. 2b,c). 

Microfluidic chambers generating low library diversity or poor measures of accessibility, 

which correlate with empty chambers or dead cells, were excluded from further analysis 

(Fig. 1d and Extended Data Fig. 2d–l). Chambers passing filter yielded an average of 

7.3×104 fragments mapping to the nuclear genome. We further validated the approach by 

measuring chromatin accessibility from a total of 1,632 IFC chambers representing 3 tier 1 

ENCODE cell lines16 (H1 human embryonic stem cells [ESCs], K562 chronic myelogenous 
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leukemia and GM12878 lymphoblastoid cells) as well as from V6.5 mouse ESCs, EML1 

(mouse hematopoietic progenitor), TF-1 (human erythroblast), HL-60 (human 

promyeloblast) and BJ fibroblasts (human foreskin fibroblast).

Because regulatory elements are generally present at two copies in a diploid genome, we 

observe a near digital (0 or 1) measurement of accessibility at individual elements within 

individual cells (Extended Data Fig. 3a). For example, within a typical single cell we 

estimate a total of 9.4% of promoters are represented in a typical scATAC-seq library 

(Extended Data Fig. 3). The sparse nature of scATAC-seq data makes analysis of cellular 

variation at individual regulatory elements impractical. We therefore developed an analysis 

infrastructure to measure regulatory variation using changes of accessibility across sets of 

genomic features (Fig. 2a,b). To quantify this variation we first choose a set of open 

chromatin peaks, identified using the aggregate accessibility track, which share a common 

characteristic (such as transcription factor binding motif, ChIP-seq peaks, cell cycle 

replication timing domains, etc.). We then calculate the observed fragments in these regions 

minus the expected fragments, down sampled from the aggregate profile, within individual 

cells. To correct for bias, we divide this by the root mean square of fragments expected from 

a background signal (BS) constructed to estimate technical and sampling error within single-

cell data sets (Methods and Extended Data Fig. 4). Herein, we refer to this metric as 

“deviation”. Finally, for any set of features, we aggregate the deviation measurements across 

cells (Fig 2b) to obtain an overall “variability” score, a metric of excess variance over the 

background signal.

We first focused our analysis on K562 myeloid leukemia cells, a cell type with extensive 

epigenomic data sets17,18. To comprehensively characterize variability associated with 

trans-factors within individual K562 cells, we computed variability across all available 

ENCODE ChIP-seq, transcription factor motifs and regions that differed in replication 

timing (as determined from Repli-Seq data sets19) (Fig. 2c,d). We found measures of cell-to-

cell variability were highly reproducible across biological replicates (Extended Data Fig 5). 

As expected from proliferating cells, we find increased variability within different 

replication timing domains, representing variable ATAC-seq signal associated with changes 

in DNA content across the cell cycle. In addition, we discover a set of trans-factors 

associated with high variability. These factors include sequence-specific transcription 

factors (TFs), such as GATA1/2, JUN, and STAT2, and chromatin effectors, such as BRG1 

and P300. Immunostaining followed by microscopy or flow cytometry (Fig. 2e and 

Extended Data Fig. 6a–d) confirmed heterogeneous expression of GATA1 and GATA2. 

Principal component (PC) analysis of single-cell deviations across all trans-factors show 

seven significant PCs, with PC 5 describing changes in DNA abundance throughout the cell 

cycle. This analysis suggests that high-variance trans-factors are variable independent of the 

cell-cycle (Fig. 2f, Extended Data Fig. 6e–g). The remaining PCs show contributions from 

several TFs, suggesting that variance across sets of trans-factors represent distinct 

regulatory states in individual cells.

We hypothesized that variation associated with different trans-factors can synergize, either 

through cooperative or competitive binding, to induce or suppress site-to-site variability in 

chromatin accessibility. For example, the most variant factors in K562 cells – GATA1 and 
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GATA2 – display expression heterogeneity and also bind an identical consensus sequence 

“GATA,” suggesting these factors may compete for access to DNA sequences. In support of 

this hypothesis, we find regulatory elements with both GATA1 and GATA2 ChIP-seq 

signals show increased variability in accessibility, whereas sites with only GATA1 or 

GATA2 show substantially less variability (Fig. 2g, Extended Data Fig. 6h). In contrast, we 

find no substantial change in variability of GATA1 binding sites that co-occur with JUN or 

CEBPB (Extended Data Fig. 6i). We also find peaks unique to GATA1 binding are 

significantly more accessible than peaks unique to GATA2 (Extended Data Fig. 6k–l) 

supporting the hypothesis that GATA1, an activator of accessibility, competes with GATA2 

to induce single-cell variability. Extending this analysis to all TF ChIP-seq data sets 

revealed a trans-factor synergy landscape for accessibility variation (Fig. 2g and Extended 

Data Fig. 6j). For example, chromatin accessibility variance associated with GATA2 

binding is significantly enhanced when the same region could also be bound by GATA1, 

TAL1 or P300. In contrast, CTCF, SUZ12, and ZNF143 appear to act as general suppressors 

of accessibility variance, unless associated with proximal binding of ZNF143 or SMC3, the 

latter a cohesin subunit involved in chromosome looping18,20. Thus, single cell accessibility 

profiles nominate distinct trans-factors that, in combination, induce or suppress cell-to-cell 

regulatory variation.

To validate our ability to detect changes in accessibility variance, we used chemical 

inhibitors to modulate potential sources of cell-cell variability. Inhibition of cyclin-

dependent kinases 4 and 6 (CDK4/6), essential components of the cell cycle, caused a 

marked reduction of variability within peaks associated with DNA replication timing 

domains (Repli-seq) (Fig. 3a). The addition of inhibitors of JUN or BCR-ABL kinases 

(JNKi and Imatinib, respectively) increased G1/S-associated variability suggesting an 

increase in the subpopulation of G1/S cells, which was validated with flow cytometry 

(Extended Data Fig. 7). JUN variability was one of the top changes caused by JNKi but not 

Imatinib, suggesting that high-variance trans-factors can also be specifically and 

pharmacologically modulated. Tumor necrosis factor (TNF) treatment of GM12878 cells 

specifically modulated accessibility variability at NF-κB sites (Fig. 3b), consistent with the 

known stochastic and oscillatory property of nuclear shuttling in this system21. Together, 

these results show that variability can be experimentally modulated and further demonstrates 

that variability is not solely dependent on the cell-cycle.

We observe that trans-factors associated with high variability are generally cell type 

specific. Hierarchical bi-clustering of single-cell deviations generated from three cell lines 

reveals cell-type specific sets of transcription factor motifs associated with high variability 

(Fig. 3c). This analysis also shows cells from different biological replicates cluster with their 

cell type of origin (with a single exception), suggesting scATAC-seq can also be used to 

deconvolve heterogeneous cellular mixtures. Systematic analysis of all assayed cell types 

identified high-variance trans-factor motifs that are generally unique to specific cell types 

(Fig. 3d and Extended Data Figure 8a). For example, regions associated with GATA TFs are 

most variant in K562s while regions associated with master pluripotency TFs Nanog and 

Sox2 are most variant in mouse embryonic stem cells (ESCs), consistent with previous 

observations of expression variation of these factors22,23. Importantly we also find high 
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variability of GATA1 and PU.1 (SPI1) binding accessibility in EML cells, a cell type 

previously shown to have >200x GATA1 and >15x PU.1 expression differences within 

clonal cellular subpopulations1. Interestingly, the complete set of identified high-variance 

trans-factors contains a number of TFs previously reported to dynamically localize into the 

nucleus, including NF-κB, JUN, and ETS/ERG21,24,25, suggesting that temporal fluctuations 

in TF concentration may be driving observed chromatin accessibility heterogeneity. Finally, 

we find BJ fibroblasts and HL-60s exhibit less variance among this set of annotated trans-

factor motifs, suggesting differences in the global levels of trans-factor variability across 

cell lines. Specific chromatin states and histone modifications26 are also sometimes 

associated with accessibility variation in single cells (Extended Data Fig. 8b,c). Overall 

these findings suggest that trans-factors promote cell-type specific chromatin accessibility 

variation genome-wide.

Patterns of variation in accessibility along the linear genome in individual cells reveal an 

unexpected connection to higher order chromosome folding. We calculated single cell 

deviations within sliding windows across the genome, each encompassing a fixed number of 

peaks (N=25) (Fig. 4a). We then determined which windows co-varied within individual 

cells by calculating the co-correlation of each window across all others within the same 

chromosome within individual cells (Extended Data Fig. 9a,b). We then further enhanced 

this co-correlation matrix using a secondary correlation analysis using methods similar to 

those employed in chromosome conformation studies9 (Methods). The resulting matrix, 

which identifies pairs of positions in the genome where accessibility co-varies within 

individual cells, yields Mb-scale correlation domains highly concordant with previously 

observed chromatin domains29 (Fig. 4b–d and Extended Data Fig. 9c–i) (R=0.61 for 

chromosome 1). These data provide independent biological validation of large-scale 

compartmentalization of higher-order chromatin structure9,29. Moreover, these results 

suggest that higher-order chromatin interactions may drive regulatory variability in cis 

(elements that are close together tend to be open together), and that ensemble chromosome 

conformation data may arise in part from the statistical properties of single cell variation in 

co-regulated accessibility, a hypothesis also supported by single-cell FISH measurements of 

interactions between DNA loci30.

Using scATAC-seq we dissected single-cell epigenomic heterogeneity and linked cis- and 

trans- effectors to variability in accessibility profiles within individual epigenomes. We 

identify trans-factors associated with increased accessibility variance, which we call high-

variance trans-factors. Additionally, other trans-factors such as CTCF appear to buffer 

variability, perhaps by providing a stable anchor of chromatin accessibility or insulator 

function that dampens potential fluctuations. Conversely, co-occurance with other factors 

such as P300 appears to amplify variability, perhaps due to synergistic interactions. Lineage-

specific master regulators are associated with cell-type specific single-cell epigenomic 

variability across several cell types, suggesting that control of single-cell variance is a 

fundamental characteristic of different biological states. Finally, variation of chromatin 

accessibility in cis is highly correlated with previously reported chromosome compartments, 

opening the intriguing possibility that this component of epigenomic noise has its roots in 
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higher-order chromatin organization. All together these data provide exciting new 

hypothesis of regulatory mechanisms that give rise to single-cell heterogeneity.

We envision that future studies will enhance the utility of scATAC-seq by further improving 

the recovery of DNA fragments, increasing throughput, and refining methods of data 

analysis (Supplementary Discussion). Improvements to throughput and new statistical tools 

will enable single-cells to be partitioned by cell-state and analyzed in aggregate to find the 

individual peaks that drive variability (Extended Data Fig. 10). In addition, we anticipate 

scATAC-seq may be paired with existing approaches in microscopy and single-cell RNA-

seq to provide opportunities for systems analysis of individual cells. Such an approach will 

link regulatory variation to details of phenotypic variation, promising new insight into the 

molecular underpinnings of cellular heterogeneity. We believe scATAC-seq will likewise 

enable the interrogation of the epigenomic landscape of small or rare biological samples 

allowing for detailed, and potentially de novo, reconstruction of cellular differentiation or 

disease at the fundamental unit of investigation – the single cell.

Extended Data

Extended Data Figure 1. Methods development for assaying single epigenomes
(a) scATAC-seq workflow for steps performed both on and off Fluidigm’s integrated 

fluidics circuit (IFC). (b–c) The development of an efficient Tn5 release protocol designed 

to permit downstream enzymatic reactions without DNA purification. (b) An in vitro 
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electrophoretic mobility gel shift assay using a fluorescently labeled PCR product (lane 1), 

showing a stable Tn5-DNA complex (lane 2) dissociated with 50 mM EDTA (lane 3) or 

0.1% SDS (lane 4). (c) Workflow and associated table of conditions used to optimize release 

protocol, showing conditions that markedly improve fragment yield over no release 

conditions or purifying DNA (Qiagen MinElute). Fragments released represents the fold 

gain in library diversity, as measured by quantitative PCR (qPCR). (d) qPCR fluorescence 

traces of 96 libraries generated using scATAC-seq. For all subsequent libraries we used a 

total of 14 PCR cycles (dotted line). (e,f) A bar plot of per-cell library (e) sequencing depth 

and (f) fraction of duplicate reads, showing each library was sequenced to varying depths to 

a similar fraction of duplicate reads.

Extended Data Figure 2. scATAC-seq data recapitulate bulk ATAC-seq characteristics
(a) Reads observed in open chromatin peaks identified from aggregate scATAC-seq data (N 

= 384 libraries) are highly correlated with reads observed from bulk ATAC-seq. (b) 
Histogram of aggregated read starts around all TSSs (in K562 cells) comparing ensemble 
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approaches, including 500 cell ATAC-seq reported in a previous publication, to scATAC-

seq shows high enrichment above background level of reads. (c) DNA fragment size 

distribution of ATAC-seq fragments from single cells (grey) and the average of all single 

cells (red) display characteristic nucleosome-associated periodicity. (d) Phase-contrast (left) 

and epifluorescence images (right) of captured cell #4 displaying characteristic live cell stain 

(Calcein) and exclusion of EtBr. (e) Histogram of read starts around TSSs for cell #4 shows 

high enrichment. (f) DNA fragment size distribution for cell #4 showing nucleosomal 

periodicity. (g) Images similar to (d) showing staining of cell #83, suggesting low viability 

due to EtBr staining. (h) Histogram of read starts around TSSs shows lower enrichment than 

cell #4. (i) DNA fragment size distribution for cell #83. (j) Images similar to (d) showing 

staining of cell #33 suggesting viability. (k) Histogram of read starts around TSSs of this 

cell shows low levels of enrichment. (l) DNA fragment size distribution showing no 

nucleosome-associated periodicity.

Extended Data Figure 3. Fragment recovery metrics within scATAC-seq libraries
(a) Accessibility across all peaks (n=50,000) in GM12878 cells. (b) Accessibility across all 

annotated promoters in GM12878 cells. Typical promoters used for subsequent analysis are 
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boxed with dotted lines. Recovery of typical promoters shown in (a) within single-cells 

within (c) observed data and (d) extrapolated data using measures of predicted library 

complexity.

Extended Data Figure 4. scATAC-seq data analysis pipeline and validation of bias normalization
Standard deviation of log fold change in reads across cells within peaks binned by deciles of 

(a) peak intensity, (b) Tn5 bias and (c) GC bias. Variability scores (incorporating bias 

normalization) within the same peaks shown in (a–c), peaks are binned by deciles of (d) 
peak intensity, (e) Tn5 bias and (f) GC bias. Log fold change versus deviation scores across 

single K562 cells for (g) GATA1 ChIP-seq target sites and (h) peaks containing a Nanog 

motif. Variability scores for factors (purple) and the permuted background (grey) ranked by 

(i) number of peak associations and (j) the mean accessibility per annotated peak. K562 

single-cell data sets showing the effect on variability scores as a function of downsampling 
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fragments. Fidelity after downsampling is measured with (k) correlation and (l) dynamic 

range relative to the complete data set.

Extended Data Figure 5. Biological replicates and measurement error analysis
(a–c) Observed changes in variability comparing the merged set of replicates (K562) to each 

individual biological replicate. Error bars represent 1 standard deviation of the variability 

scores after bootstrapping cells from each replicate. (d–f) Correlation of errors computed 

using three distinct approaches.
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Extended Data Figure 6. Characterization of high-variance trans-factors in K562 cells
(a–d) Distribution of (a) GATA1, (b) GATA2, (c) actin and (d) CTCF fluorescence 

observed by flow cytometry. Distributions in grey depict isotype controls. (e) Bi-clustered 

heat map of single cell deviations as observed within K562 cells (N=239). Labels on right 

identify co-clustering of related factors. (f) Bi-clustered heat map of single-cell deviations 

observed from permuted data. (g) Projection of factor loadings onto principal component 1 

versus 5 from principal component (PC) analysis of heatmap from Fig. 2d. Factor loadings 

do not vary along PC5, while peaks associated with regions with different replication 

timings (RepliSeq) have strong variation along this axis. Venn-diagrams showing variability 

of (h) GATA1 and/or GATA2, (i) CJUN and/or GATA2 and CEBPB and/or GATA2 (co-) 

occurring ChIP-seq sites. (j) -log10(p-values) of calculated changes in co-occurring ChIP-

seq sites shown in Figure 2e. (k) Distribution of accessibility among GATA1 only, GATA2 

only, and shared sites. (l) Mean accessibility from GATA1 only, GATA2 only, and shared 
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sites in (k), error bars represent 1 standard deviation generated by bootstrapping ChIP-seq 

peaks.

Extended Data Figure 7. Drug treatments modulate factor variability
(a–b) Change in variability of untreated K562 cells versus cells treated with (a) Imatinib and 

(b) JUN inhibitor show increase of variability in factors associated with the cell cycle or s-

phase and JUN factors respectively. (c–f) Flow cytometry data depicting DNA content, 

using DAPI or PI, in (c) control K562 cells or cells showing altered cell-cycle status after 

treatment with (d) cell-cycle inhibitor, (e) Imatinib and (f) JUN inhibitor.

Extended Data Figure 8. TF motif correlation and variability across chromatin state
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(a) Hierarchical bi-clustering of high-variance TF motif annotations using Pearson 

correlation. Variability of regions associated with (b) chromatin states, as identified by Ernst 

et al.26, and (c) histone modifications.

Extended Data Figure 9. Cis variability analysis within single-cells
(a) Interchromosomal chromosome 1 co-correlations of deviation scores within single cells 

calculated for bins of 25 peaks within GM12878 cells. (b) Distribution, using density 

estimation, of correlation values shown in (a). (c–g) Analysis of cis-correlation (identical to 

Fig. 4) for representative chromosomes 7, 11, 12, 17, and 20. Correlation between scATAC-

seq cis-correlation and chromosome conformation capture methods for each chromosome in 

(h) GM12878 and (i) K562 cells.
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Extended Data Figure 10. Measurements of individual peaks within single-cells
(a) The distribution of GATA1 deviation scores for single K562 cells. Volcano plots of (b) 
non-GATA1 peaks and (c) GATA1 peaks in K562 cells, p-values were calculated using a 

binomial test. (d) The distribution of NF-κB deviation scores for single GM12878 cells. 

Volcano plots of (e) non-NFKB peaks and (f) NF-κB peaks in GM12878 cells, p-values 

were calculated using a binomial test. Inset numbers show the number of points in upper left 

or upper right quadrants of the panel. (g) Accessibility at a genomic locus, showing (top) 

aggregate NFKB low (blue) and NFKB high (red) profiles, (middle) single GM12878 cells 

ranked by NFKB deviations scores and (bottom) unranked single-cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Single-cell ATAC-seq provides an accurate measure of chromatin accessibility genome-
wide
(a) Workflow for measuring single epigenomes using scATAC-seq on a microfluidic device 

(Fluidigm). (b) Aggregate single-cell accessibility profiles closely recapitulate profiles of 

DNase-seq and ATAC-seq. (C) Genome-wide accessibility patterns observed by scATAC-

seq are correlated with DNase-seq data (R = 0.80). (d) Library size versus percentage of 

fragments in open chromatin peaks (filtered as described in methods) within K562 cells 

(N=288). Dotted lines (15% and 10,000) represent cutoffs used for downstream analysis.
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Figure 2. Trans-factors are associated with single-cell epigenomic variability
(a) Schematic showing two cellular states (TF high and TF low) leading to differential 

chromatin accessibility. (b) Analysis infrastructure, which uses a calculated background 

signal (BS; see Supplemental Methods section 3.2) to calculate TF deviations and variability 

from scATAC-seq data. The TF value is calculated by subtracting the number of expected 

fragments from the observed fragments per cell (see Supplemental Methods section 3.1). (c) 
Observed cell-to-cell variability within sets of genomic features associated with ChIP-seq 

peaks, transcription factor motifs, and replication timing (error estimates shown in grey, see 

Methods for details). Variability measured from permuted background (see Methods) is 

shown in grey dots. (d) Distribution of normalized deviations from expected accessibility 

signal for GATA1 sites in individual cells, histogram of cells shown in grey, density profile 

shown in purple (see Methods). (e) Immunostaining of GATA1 (green) and GATA2 (red) 

shows protein expression in K562s. (f) Principal components ranked by fraction of variance 

explained from observed data (purple) and permuted data (orange). Bar plot of observed 

data shown in grey. (g) Calculated changes in associated variability of factors when present 

together versus independently, depicting a context-specific trans-factor variability landscape 

(see Methods). Venn-diagrams show variability associated with GATA1 and/or GATA2 and 

CTCF and/or SMC3 (co-) occurring ChIP-seq sites.
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Figure 3. Cell type specific epigenomic variability
Change of cellular variability due to chemical perturbations using (a) CDK4/6 cell-cycle 

inhibitor (K562) or (b) TNF-alpha stimulation (GM12878), error bars (shown in grey) 

represent 1 standard deviation of bootstrapped cells across the two conditions. (c) Heat map 

of deviations from expected accessibility signal across trans-factors (rows) and of single 

cells (columns) from 3 cell types. Bottom color map represents assignment classification 

from hierarchical clustering. (d) Variability associated with trans-factor motifs across 7 cell 

types. Each row is normalized to the maximum variability for that motif across cell types 

(shown left).
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Figure 4. Structured cis variability across single epigenomes
(a) Per-cell deviations of expected fragments across a region within chromosome 1 (see 

Methods). For display, only large deviation cells are shown (N=186 cells). (b) Pearson 

correlation coefficient representing topological domain signal (see Methods) of interaction 

frequency from a chromatin conformation capture assay (left, data from Kalhor et al.29) or 

doubly correlated normalized deviations of scATAC-seq (right) from chromosome 1 (see 

Methods). Data in white represents masked regions due to highly repetitive regions. (c) 
Permuted cis-correlation map for chromosome 1 (analyzed identically to (b)). (d) Box 

highlights a representative region depicting long-range covariability.
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