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Summary

It has long been the dream of biologists to map gene expression at the single cell level. With such 

data one might track heterogeneous cell sub-populations, and infer regulatory relationships 

between genes and pathways. Recently, RNA sequencing has achieved single cell resolution. 

What is limiting is an effective way to routinely isolate and process large numbers of individual 

cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-

microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent 

analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is 

readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, 

revealing in detail the population structure and the heterogeneous onset of differentiation after LIF 

withdrawal. The reproducibility of these high-throughput single cell data allowed us to deconstruct 

cell populations and infer gene expression relationships.
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Introduction

Much of the physiology of metazoans is reflected in the temporal and spatial variation of 

gene expression among constituent cells. Some variation is stable and has helped us to 

define both adult cell types and many intermediate cell types in development (Hemberger et 

al. 2009). Other variation results from dynamic physiological events such as the cell cycle, 

changes in cell microenvironment, development, aging, and infection (Loewer and Lahav, 

2011). Still other expression changes appear to be stochastic in nature (Paulsson, 2005; 

Swain et al. 2002), and may have important consequences (Losick and Desplan, 2008). To 

understand gene expression in development and physiology, biologists would ideally like to 

map changes in RNA levels, protein levels, and post-translational modifications in every 

cell. Analysis at the single cell level has until a decade ago principally been through in situ 

hybridization for RNA, immunostaining for proteins, or, more recently with fluorescent 

chimeric proteins. These methods allow only a few genes to be monitored in each 

experiment, however. More recently, pioneering work (e.g. (Chiang and Melton, 2003; 

Phillips and Eberwine, 1996)) has made possible global transcriptional profiling at the single 

cell level, though the number of cells is often limited. Although an RNA inventory at the 

single cell level does not offer a complete picture of the state of the cell, it can provide 

important insights into cellular heterogeneity and collective fluctuations in gene expression, 

as well as crucial information about the presence of distinct cell subpopulations in normal 

and diseased tissues. There is also hope that gene expression correlations within cell 

populations can be used to derive lineage structures (Qiu et al. 2011) and pathway structures 

de novo by reverse engineering (He et al. 2009).

Modern methods for RNA sequence analysis (RNA-Seq) can quantify the abundance of 

RNA molecules in a population of cells with great sensitivity. After considerable effort these 

methods have been harnessed to analyze RNA content in single cells. What is needed now 

are effective ways to isolate and process large numbers of individual cells for in-depth RNA 

sequencing, and to do so with quantitative precision. This requires cell isolation under 

uniform conditions, preferably with minimal cell loss, especially in the case of clinical 

samples. The requirements for the number of cells, the depth of coverage, and the accuracy 

of measurements will depend on experimental considerations, including factors such as the 

difficulty of obtaining material, the complexity of the cell population, and the extent to 

which cells are diversified in gene expression space. The depth of coverage necessary is 

hard to predict a priori, but the existence of rare cell types in populations of interest, such as 

occult tumor cells or tissue stem cell sub-populations (Simons and Clevers, 2011), combined 

with independent drivers of heterogeneity such as cell cycle and stochastic effects, suggests 

that analyzing large numbers of cells will be necessary.

The challenges of single cell RNA-Seq are easy to appreciate. Measurement accuracy is 

highly sensitive to the efficiency of its enzymatic steps; and the need for amplification from 

single cells risks introducing considerable errors. There are major obstacles to parallel 

processing of thousands of cells, and to handling small samples of cells efficiently so that 

nearly every cell is measured. Microfluidics has emerged as a promising technology for 

single-cell studies with the potential to address these challenges (Lecault et al. 2012; Wu et 

al. 2014). Microfluidic chips containing hundreds of valves can trap, lyse and assay 
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biomolecules from single cells with higher precision and often with better efficiencies than 

micro-titer plates (Streets et al. 2014; Wu et al. 2014). For RNA sequencing of single cells, 

reduced reaction volumes improve the yields of cDNA and reduce technical variability 

(Islam et al. 2014; Wu et al. 2014). Yet the number of single cells that can be currently 

processed with microfluidic chips remains at ~70–90 cells per run, so analyzing large 

numbers of cells is difficult, and may take so much time that the cells are no longer viable. 

Moreover, capture efficiency of cells into microfluidic chambers is low, a potential issue for 

rare or clinical samples. An alternative is the use of microfluidic droplets suspended in 

carrier oil (Guo et al. 2012; Teh et al. 2008). Cells can be compartmentalized into droplets 

and assayed for different bio-molecules (Mazutis et al. 2013), their genes amplified 

(Eastburn et al. 2013) and droplets sorted at high-throughput rates (Agresti et al. 2010). 

Unlike conventional plates or valve-based microfluidics, droplets are intrinsically scalable: 

the number of reaction ‘chambers’ is not limited, and capture efficiencies are high since all 

cells in a sample volume can in principle be captured in droplets.

We exploited droplet microfluidics to develop a technique for indexing thousands of 

individual cells for RNA sequencing, which we term inDrop (indexing droplets) RNA 

sequencing. Another droplet-based RNA-seq technology is also described in this issue 

(McCarroll et al., 2015). Our method has a theoretical capacity to barcode tens of thousands 

of cells in a single run. Here we use hundreds to thousands of cells per run, since sequencing 

depth and cost becomes limiting for us at very high cell counts. We evaluated inDrop 

sequencing by profiling mouse embryonic stem (ES) cells before and after LIF withdrawal. 

A total of over 10,000 barcoded cells and controls were profiled, with ~3,000 ES and 

differentiating cells sequenced at greater depth for subsequent analysis. Our analysis 

identifies rare sub-populations expressing markers of distinct lineages that would be difficult 

to find by profiling a few hundred cells. We show that key pluripotency factors fluctuate in a 

correlated manner across the entire ES cell population, and we explore whether fluctuations 

might associate gene products with the pluripotent state. Upon differentiation, we observe 

dramatic changes in the correlation structure of gene expression, resulting from 

asynchronous inactivation of pluripotency factors, and the emergence of novel cell states. 

Altogether, our results showcase the potential of droplet methods to deconstruct large 

populations of cells and to infer gene expression relationships within a single experiment.

RESULTS

A microfluidic platform for droplet barcoding and analysis of single cells

The inDrop platform encapsulates cells into droplets with lysis buffer, reverse transcription 

(RT) reagents, and barcoded oligonucleotide primers (Fig. 1). mRNA released from each 

lysed cell remains trapped in the same droplet and is barcoded during synthesis of 

complementary DNA (cDNA). After barcoding, material from all cells is combined by 

breaking the droplets, and the cDNA library is sequenced using established methods (CEL-

Seq) (Hashimshony et al. 2012; Jaitin et al. 2014). The major challenge is to ensure that each 

droplet carries primers encoding a different barcode. We synthesized a library of barcoded 

hydrogel microspheres (BHMs) that are co-encapsulated with cells (Figs. 2). Each BHM 

carries covalently coupled, photo-releasable primers encoding one of 147,456 barcodes, and 
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the pool size could be increased in a straightforward manner. The current pool size allows 

randomly labeling 3,000 cells with 99% unique labeling (Extended Methods); many more 

cells can be processed by splitting a large emulsion into separate tubes.

To barcode the cells, we developed a microfluidic device with four inlets for the BHMs, 

cells, RT/lysis reagents and carrier oil; and one outlet port for droplet collection (Fig. 3). 

The device generates monodisperse droplets that can be varied in the range of 1–5 nL at a 

rate of ~10–100 drops per second, simultaneously mixing aliquots from the inlets (Fig. 3A-

C; Movies S1, S2). The flow of deformable hydrogels inside the chip can be synchronized 

due to their close packing and regular release, allowing nearly 100% hydrogel droplet 

occupancy (Abate et al. 2009). Thus cells arriving into droplets will nearly always be co-

encapsulated with barcoded primers. Due to the large cross-section of the microfluidics 

channel (60×80 μm2) there is no cell size bias in capture. In typical conditions, cells occupy 

only 10% of droplets, so two-cell events are rare (Fig. 3D), and cell aggregates are 

minimized by passing cells through a strainer or by FACS. Droplets must contain at least 

one cell and one gel to produce a barcoded library for sequencing; we observed that over 

90% of these productive droplets contained exactly one cell and one gel (Fig. 3E). After cell 

and BHM encapsulation, primers are photo-released by ultraviolet exposure, a step critical 

for efficient RT (Figs. 1,3F).

With this system, we captured cells at a rate of 4,000–12,000/hour, or 2,000–3,000 cells 

barcoded for every 100μL of emulsion (Fig. 3G). As the cost of sequencing drops, higher 

scales may become routine.

Validation of random barcoding and droplet integrity

We tested droplet integrity by barcoding a ~50:50 mixture of mouse ES and human K562 

erythroleukemia cells (Fig. 4A). In this test each barcode should associate entirely with 

either mouse or human transcripts; only two-cell events would lead to the appearance of 

barcodes with mixed profiles. Fig. 4A shows that indeed 96% of barcodes mapped to either 

the mouse or human transcriptome with more than 99% purity. This already low error rate 

(~4%) could be further reduced by dilution of the cell suspensions, or by sorting singlet 

droplets (Baret et al. 2009). However, the presence of rare two cell events does not obscure 

rare cell sub-populations, since even if 10% of cells are in doublets, then 90% of rare cells 

will be found as singlets. This is demonstrated later for ES cells, where we found a rare cell 

type representing <1% of the population.

We also tested that cell barcodes were randomly sampled from the intended pool of possible 

barcodes. A comparison of barcode identities across a total of 11,085 control droplets 

consistently showed excellent agreement with random sampling (Fig. S3A).

Baseline technical noise for inDrops

Two major sources of technical noise in single cell RNA-Seq are variability between cells in 

mRNA capture efficiency, and the intrinsic sampling noise resulting from capturing finite 

numbers of mRNA transcripts in each cell. The CEL-Seq protocol has been reported to have 

a capture efficiency of ~3% (Grun et al. 2014) or less (Jaitin et al. 2014), and a variability in 
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capture efficiency of ~25% for pure RNA controls and ~50% for cells (coefficients of 

variation between samples) when performed in microtitre plates (Grun et al. 2014). 

Technical noise can also arise during library amplification, but this is mostly eliminated 

through the use of random unique molecular identifier (UMI) sequences, allowing 

bioinformatic removal of duplicated reads (Fu et al. 2011; Islam et al. 2014).

An ideal test of technical noise would compare two identical cells, but unfortunately there 

are no cells where one can assert that the abundance of transcripts would be equal. To test 

technical noise in our system, we analyzed a control sample of purified total RNA diluted to 

single cell concentration (10pg per droplet), mixed with ERCC RNA spike-in controls of 

known concentration (Baker et al. 2005) (Fig. 4B). We processed 953 droplets with an 

average of 30·103 (±21%) UMI-filtered mapped (UMIFM) reads per droplet (Fig. 4B), and 

low sequencing redundancy (averaging 2.3 reads/molecule; Fig. S3E). Each droplet gave 5–

15·103 unique gene symbols (25,209 detected in total), correlating strongly with UMIFM 

counts (Fig. 4C). The method showed an excellent linear readout of the ERCC spike-in input 

concentration (Fig. 4D) down to concentrations of 0.5 molecules/droplet on average; below 

that limit, we tended to over-count transcripts, a bias seen previously (Grun et al. 2014; 

Hashimshony et al. 2012).

Another measure of method performance is its sensitivity, i.e. the likelihood of detecting an 

expressed gene. The sensitivity was almost entirely explained by binomial sampling 

statistics (Fig. 4E; Extended Methods), and thus depends on transcript abundance and the 

capture efficiency, measured from the ERCC spike-ins to be 7.1% (Fig. 4D). With this 

efficiency, sensitivity was 50% when 10 transcripts were present, and >95% when >45 

transcripts were present (Fig. 4E). The sensitivity and capture efficiency are lower than 

those estimated for another single cell transcriptomics protocol (~20%) (Picelli et al. 2014), 

but are higher than those reported for CEL-Seq (3.4%) (Grun et al. 2014; Hashimshony et al. 

2012). Moreover, the low sequencing redundancy suggests that deeper sequencing may 

further increase efficiency and thus sensitivity.

In accuracy, the method showed very low levels of technical noise, assessed by comparing 

the coefficient of variation (CV = standard deviation/mean) of each gene across the cell 

population to its mean abundance. In a system limited only by sampling noise, all genes 

should obey CV=(mean)−1/2. Technical noise can lead to dispersion around this curve, and 

to a minimum “baseline” CV. After normalization, 99.5% of detected genes were consistent 

with the power law, with a baseline technical noise of <10% (N=25,209; p>0.01 χ2 test, no 

multiple hypothesis correction) (Fig. 4F). To our knowledge, this noise profile is among the 

cleanest obtained for single cell data to date, although the sampling noise is still high (see 

comparisons in Fig. S3H). Consistent with the low noise profile, the mean and CV values 

for genes measured in cells (see below) correlated well with results measured by single-

molecule fluorescent in situ hybridization (Fig. S3 with data from (Grun et al. 2014); 

Pearson correlation R=0.92 for mean, and R=0.90 for CV).

Noise modeling of single cell data

Before analyzing cells, we developed a technical noise model of the effects of low sampling 

efficiency of transcripts, and of the effects of cell-to-cell variation (noise) in efficiency. Low 
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efficiency and noise in efficiency affect both the observed cell-to-cell variability of gene 

expression, and the observed covariation of gene expression. We derived relationships 

between biological and observed quantities for the CVs of gene abundances across cells, 

gene Fano Factors (variance/mean), and pairwise correlations between genes (Fig. 4G and 

Theory section of Supplemental Information). The Fano Factor is commonly used to 

measure noisy gene expression, and yet is very sensitive to the efficiency β (Eq. 2): even 

without technical noise, only genes with a Fano Factor F ≳ 1/β will be noticeably variable in 

inDrops or other methods for single cell analysis. The addition of technical noise introduces 

a “baseline” CV (Brennecke et al. 2013; Grun et al. 2014), and spuriously amplifies true 

biological variation (Eq. 1). Low sampling efficiencies also dampen correlations between 

gene pairs in a predictable manner, setting an expectation to find relatively weak but 

nevertheless statistically significant correlations in our data (Eqs. 2–3). These results provide 

a basis for formally controlling for noise in single cell measurements.

Single cell profiling of mouse ES cells

Single cell transcriptomics can distinguish cell types of distinct lineages even with very low 

sequencing depths (Pollen et al. 2014). What is less clear is the type of information that can 

be determined from studying a relatively uniform population subject to stochastic 

fluctuations. To explore this, we chose to study mouse ES cells maintained in serum. These 

cells exhibit well-characterized fluctuations, but are still uniform compared to differentiated 

cell types and thus pose a challenge for single cell sequencing.

Previous studies have indicated that ES cells are heterogeneous in gene expression (Guo et 

al. 2010; Hayashi et al. 2008; MacArthur et al. 2012; Martinez Arias and Brickman, 2011; 

Ohnishi et al. 2014; Singer et al. 2014; Torres-Padilla and Chambers, 2014; Yan et al. 2013). 

Other studies, which sorted ES cells into populations expressing high or low levels of the 

pluripotency factors Nanog (Chambers et al. 2007; Kalmar et al. 2009), Rex1/Zfp42 (Singer 

et al. 2014; Toyooka et al. 2008) and Stella/Dppa3 (Hayashi et al. 2008), have suggested 

that ES cells fluctuate infrequently between two metastable epigenetic states corresponding 

to a pluripotent inner cell mass (ICM)-like state, and an epiblast-like state poised to 

differentiate. These pluripotency factors were found to correlate with the expression of the 

epigenetic modifier Dnmt3b and its regulator Prdm14, and with global differences in 

chromatin methylation (Singer et al. 2014; Yamaji et al. 2013). Evidence suggests that other 

sources of heterogeneity also exist in the ES cell population: fluctuations in the Primitive 

Endoderm (PrEn) marker Hex, for example, associate with a bias towards PrEn fate upon 

differentiation (Canham et al. 2010); fluctuations in Hes1 bias differentiation into Epiblast 

sub-lineages (Kobayashi et al. 2009); and rare expression of other markers (Zscan4, Eif1a 

and others) associate with a totipotent state with access to extra-embryonic fates (Macfarlan 

et al. 2012). Whether these multiple fate biases result from dynamic fluctuations of 

transcription factors or represent stable cell states is not known.

To test inDrop sequencing, we harvested different numbers of cells at different sequencing 

depths for each of the ES cell runs. We collected 935 ES cells for deep sequencing, and two 

further samples of 2,509 and 3,447 cells from a single dish as technical replicates. We 

further sampled 145, 302 and 2,160 cells after 2 days after LIF withdrawal; 683 cells after 4 
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days; and 169 and 799 cells after 7 days. The average number of reads per cell ranged up to 

208·103, and the average UMIFM counts up to 29·103 (Table S1). Technical replicates 

showed very high reproducibility (Pearson correlation of CVs R>0.98, Fig. 5A inset); as did 

biological replicates (R=0.98), whereas differentiating cells showed distinct expression 

profiles (Fig. S4; R=0.94; 732 genes differentially expressed at more than 2-fold, see Table 

S2). The capture efficiency β, estimated from comparing UMIFM counts to smFISH results 

(Fig. S3), was slightly lower (4.5%) than for pure RNA.

Heterogeneous sub-populations of ES cell origin

For the 935 ES cells, we identified 2,044 significantly variable genes (Table S3, Fig. 5A,B) 

(10% FDR, statistical test in Extended Methods) expressed at a level of at least 5 UMIFM 

counts in at least one cell. The set of variable genes was enriched for annotations of 

metabolism and transcriptional regulation, and for targets of transcription factors associated 

with pluripotency (Sp1, Elk1, Nrf1, Myc, Max, Tcf3, Lef1), including transcription factors 

that directly interact with Pou5f1 and Sox2 promoter regions (Gao et al. 2013) (Gabpa, Jun, 

Yy1, Atf3) (Table S3, 10−120<p<10−10). Among the variable genes, we found pluripotency 

factors previously reported to fluctuate in ES cells (Nanog, Rex1/Zfp42, Dppa5a, Sox2, 

Esrrb) but, notably, the most highly variable genes included known markers of PrEn fate 

(Col4a1/2, Lama1/b1, Sox17, Sparc), markers of Epiblast fate (Krt8, Krt18, S100a6), and 

epigenetic regulators of the ES cell state (Dnmt3b). The vast majority of genes showed very 

low noise profiles, consistent with Poisson statistics (e.g. Ttn, Fig. 5B). We evaluated the 

above-Poisson noise, defined as η=CV2-1/μ (μ being the mean UMIFM count), for a select 

panel of genes (Fig. 5C) and found it to be in qualitative agreement with previous reports 

(Grun et al. 2014; Singer et al. 2014). Unlike the CV or the Fano Factor, η is expected to 

scale linearly with its true biological value even for low sampling efficiencies (Fig. 4G, Eq. 

(1)).

To test the idea that ES cells exhibit heterogeneity between a pluripotent ICM-like state and 

a more differentiated epiblast-like state, we contrasted the expression of candidate 

pluripotency and differentiation markers in single ES cells. Gene pair correlations (Fig. 5D) 

at first appear consistent with a discrete two-state view, since both the epiblast marker Krt8 

and the PrEn marker Col4a1 were expressed only in cells low for Pou5f1 (shown) and other 

pluripotency markers (Fig. S6A). Also in agreement with previous studies (Toyooka et al. 

2008), the differentiation-prone state was rare. The correlations also confirmed other known 

regulatory interactions in ES cells, for example Sox2, a known negative target of BMP 

signaling, was anti-correlated with the BMP target Id1. What was more surprising was the 

finding that multiple pluripotency factors (Nanog, Trim28, Esrrb, Sox2, Klf4, Zfp42) 

fluctuated in tandem across the bulk of the cell population, but not all pluripotency factors 

did so (Oct4/Pou5f1) (Fig. 5D and Fig. S6). These observations are not explained by a 

simple two-state model (Singer et al. 2014), since pluripotency factor levels are not 

determined only by differentiation state. Oct4/Pou5f1 instead correlated strongly with cyclin 

D3 (Fig. 5D and Fig. S5A), but not other cyclins, suggesting fluctuations of unknown origin.

What then is the structure of the ES cell population? We conducted a principal component 

analysis (PCA) of the ES cell population for the highly variable genes (Fig. 5E,F; sensitivity 
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analysis in Fig. S5B; gene selection and normalization in Extended Methods). PCA reveals 

multiple non-trivial dimensions of heterogeneity (12 dimensions with 95% confidence) (Fig. 

5E), which are not explained by independent fluctuations in each gene (Marčenko and 

Pastur, 1967; Plerou et al. 2002). Inspection of the first four principal components, and the 

principal genes contributing to these components (Fig. 5F, S5), revealed the presence of at 

least three small but distinct cell sub-populations: one rare population (6/935 cells) 

expressed very low levels of pluripotency markers and high levels of PrEn markers (Niakan 

et al. 2010); a second cell population (15/935 cells) expressed high levels of Krt8, Krt18, 

S100a6, Sfn and other markers of the epiblast lineage. The third population represented a 

seemingly uncharacterized state, marked by expression of heat shock proteins Hsp90, Hspa5 

and other ER components such as the disulphide isomerase Pdia6. These sub-populations 

expressed low levels of pluripotency factors, suggesting they are biased toward 

differentiation or have already exited the pluripotent state. The latter population could also 

reflect stressed cells.

PCA analysis is a powerful tool for visualizing cell populations that can be fractionated with 

just two or three principal axes of gene expression. However, when more than three non-

trivial principal components exist, PCA alone is not sufficient for dimensionality reduction 

of high-dimensional data. Using genes identified from PCA, we used t-distributed Stochastic 

Neighbor Embedding (t-SNE) (Amir el et al. 2013; Van der Maaten and Hinton, 2008) to 

further reduce dimensionality (Fig. 5G and Fig. S5C-L) (see Extended Methods). A 

continuum of states from high pluripotency to low pluripotency emerged, with several 

outlier populations at the population fringes. These included the three populations found by 

PCA, but also two additional fringe sub-populations characterized respectively by high 

expression of Prdm1/Blimp1 and Lin41/Trim71 (Fig. S5I-L). The first of these expressed 

moderate levels of the pluripotency factors, while the second expressed low levels. Thus, 

while we found evidence of ES cells occupying an epiblast-like state as previously reported, 

and indeed found evidence for collective fluctuations between ICM to epiblast-like states 

(Fig. 5G and Fig. S5), these fluctuations do not describe the full range of heterogeneity in 

the ES cell population.

Functional signatures in gene expression covariation

In complex mixtures of cells, correlations of gene expression patterns could arise from 

differences between mature cell lineages. In a population of a single cell type such as the ES 

cell population studied here, however, fluctuations in cell state might reveal functional 

dependencies among genes.

To test whether expression covariation might contain regulatory information, we explored 

the covariation partners of known pluripotency factors using a topological network analysis 

scheme, similar to approaches developed for comparing multiple bulk samples (Li and 

Horvath, 2007) (Fig. 6A; algorithm in Extended methods; sensitivity analysis of the 

method in Fig. S6A). This scheme identifies the set of genes most closely correlated with a 

given gene (or genes) of interest, and which also most closely correlate with each other. 

Given the sensitivity of correlations to sampling efficiency (Fig. 4G, Eq. (3)), we reasoned 

that a method based on correlation network topology would be more robust than using 
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correlation magnitude. Remarkably, the network analysis strongly enriched for pluripotency 

factors: of the 20 nearest neighbors of Nanog, ten are documented pluripotency factors, three 

more are associated with pluripotency, and one (Slc2a3) is syntenic with Nanog (Scerbo et 

al. 2014). Only one gene (Rbpj) is dispensable for pluripotency (Oka et al. 1995). The 

analysis revealed a network of correlated pluripotency factors (Figs. S6B), with multiple 

pluripotency factors neighboring the same previously uncharacterized genes (Extended 
Methods and Fig. S6C). It is tempting to predict that at least some of these genes are also 

involved in maintaining the pluripotent state. For Sox2, the entire neighborhood consisted of 

factors directly or indirectly associated with pluripotency (Fig. 6C).

The same analysis may provide insight into other biological pathways, although pathways 

seemingly independent of ES cell biology had no meaningful topological network 

associations. This suggests that gene correlation networks in single cell data capture the 

fluctuations most specific to the biology of the cells being studied, but could be harnessed to 

study other pathways through weak experimental perturbations.

Cell cycle transcriptional oscillations in ES cells are weak compared to somatic cells

When the network analysis was applied to Cyclin B we found very few neighboring genes 

(Fig. 6C), raising the question of why single cell data does not reveal broader evidence of 

cell cycle-dependent transcription in ES cells. Previous studies have argued for an absence 

of ES cell cycle dependent transcription (White and Dalton, 2005). Cyclins (except cyclin B) 

are expressed uniformly throughout the cell cycle (Faast et al. 2004; Stead et al. 2002), and 

the activity of the E2F family of transcription factors, which normally oscillates in somatic 

cells, is also constitutive in ES cells (Stead et al. 2002). ES cells have a very short cell cycle 

of ~8–10 hours, with ~80% of cells in S phase (White and Dalton, 2005), and almost no G1 

and G2 phases, so that cell cycle-dependent transcription could be difficult to detect.

We tested whether unperturbed ES cell data showed evidence of cell cycle transcriptional 

variation. As a control, we applied inDrops to human K562 erythroleukemia lymphoblasts 

(N=239 cells, average 27·103 UMIFM counts per cell), and focused on 44 transcripts 

previously categorized to a particular cell cycle phase (Whitfield et al. 2002). A hierarchical 

clustering of these genes ordered them across the K562 cell cycle, with anti-correlations 

between early and late cell cycle genes (Fig. 6E). When the same analysis was repeated for 

the ES cell population, we found correlations between the cell cycle genes were extremely 

weak, and only clustered a subset of G2/M genes (Fig. 6F). These results confirm that ES 

cells lack strong cell cycle oscillations in mRNA abundance, but they do show evidence of 

limited G2/M phase-specific transcription.

Population dynamics of differentiating ES cells

Upon LIF withdrawal, ES cells differentiate by a poorly characterized process, leading to the 

formation of predominantly epiblast lineages. In our single cell analysis, following unguided 

differentiation by LIF withdrawal (Nishikawa et al., 1998), the differentiating ES cell 

population underwent significant changes in population structure, qualitatively seen by 

hierarchical clustering cells (Fig. 7A). As validation, and to dissect the changes in the cell 

population, we first inspected selected pluripotency factors and differentiation markers (Fig 
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7B,C and Table S2). As seen in bulk assays, the average expression of Zfp42 and Esrrb 

levels dropped rapidly; Pou5f1 and Sox2 dropped gradually; the epiblast marker Krt8 

increased steadily; and Otx2, one of the earliest transcription factors initiating differentiation 

from the ICM to the epiblast state, transiently increased by day 2 and then decreased (Yang 

et al. 2014). The average gene expression was not however representative of individual 

cells: some cells failed to express epiblast markers and a fraction of these expressed 

pluripotency factors at undifferentiated levels even seven days after LIF withdrawal, (Fig 

7C). This trend was supported by a PCA analysis of cells from all time points (Fig. 7D; see 

Extended Methods for gene selection and normalization), showing that after 7 days, 5% 

(N=799) of cells overlapped with the ES cell population. The greatest temporal 

heterogeneity was evident at four days post-LIF, with cells spread broadly along the first 

principal component between the ES cell and differentiating state. The PCA analysis also 

revealed a metabolic signature (GO annotation: Cellular Metabolic Process, p=1.4·10−8) 

consistent with the changes occurring upon differentiation (Yanes et al. 2010).

In addition to heterogeneity due to asynchrony, we visualized population structure by t-SNE 

and found distinct sub-populations, not all of which mapped to known cell types (Fig. 7G; 

sub-population markers tabulated in Table S4). tSNE of genes over the cells revealed 

clusters of genes marking distinct sub-populations (Fig. 7G right panel). At two and fours 

days post-LIF withdrawal, we identified cells expressing Zscan4 and Tcstv1/3, previously 

identified as rare totipotent cells expressing markers of the 2-cell stage (Macfarlan et al. 

2012). At four and seven days, a population emerged expressing maternally imprinted genes 

(H19, Rhox6/9, Peg10, Cdkn1 and others), suggesting widespread DNA demethylation, 

possibly in early primordial germ cells. In addition, resident PrEn cells were seen at all time 

points (Figs. 7F,G), but failed to expand. In sum, the analysis exposes temporal 

heterogeneity in differentiation and distinct ES cell fates.

Refinement of gene expression upon differentiation

Our results allow testing suggestions that ES cells are characterized by promiscuous gene 

expression that becomes refined upon differentiation (Golan-Mashiach et al. 2005; Wardle 

and Smith, 2004). If so, differentiating cells should become confined to tighter domains in 

gene expression “space” than ES cells, as measured by the number of independent 

dimensions over which cells can be found. We evaluated the intrinsic dimensionality of the 

distribution of ES cells and differentiating cells in gene expression space using the method 

by (Kégl, 2002). Supporting the refinement hypothesis, we found that intrinsic 

dimensionality decreased after differentiation (Fig. 7H). Thus, ES gene expression 

fluctuations are weakly coupled compared to the more coherent differences following LIF 

withdrawal.

Discussion

We report here a platform for single cell capture, barcoding and transcriptome profiling, 

without physical limitations on the number of cells that can be processed. The method 

captures the majority of cells in a sample, has rapid collection times and has low technical 

noise. Such a method is suitable for small clinical samples including from tumors and tissue 

Klein et al. Page 10

Cell. Author manuscript; available in PMC 2016 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



micro-biopsies, and opens up the possibility of routinely identifying cell types, even if rare, 

based on gene expression. This type of data is also valuable for identifying putative 

regulatory links between genes, by exploiting natural variation between individual cells. We 

gave simple examples of such inference, but this type of data lends itself to more formal 

reverse engineering.

We have developed the droplet platform initially for whole-transcriptome RNA sequencing; 

however the technology is highly flexible and should be readily adaptable to other 

applications requiring barcoding of RNA/DNA molecules. Our initial implementation of the 

method made use of a very simple droplet microfluidic chip, consisting of just a single flow-

focusing junction. Future versions of the platform might take further advantage of droplet 

technology for multi-step reactions, or select target cells by sorting droplets on-chip (Guo et 

al. 2012).

The method in its current form still suffers some limitations. The major technical drawback 

we encountered was the mRNA capture efficiency of ~7%, which has only recently become 

robustly quantifiable using UMI-based filtering (Fu et al. 2011; Islam et al. 2014). Although 

higher than for several previously published methods, the efficiency is nonetheless too low 

to allow reliable detection in every cell of genes with transcript abundances lower than 20–

50 transcripts. The method is therefore most reliable for profiling medium to highly 

abundant components of cells, missing some key transcriptional regulators, although we 

were able to detect almost all mouse transcription factors (1,350 out of 1,405) in a subset of 

cells, with the key ES cell transcription factors (Pou5f1, Sox2, Zfp42 and 44 other 

transcription factors) detected in over 90% of all cells. This is a general problem affecting 

single cell RNA sequencing, which will require improved cell lytic approaches or optimized 

enzymatic reactions in library preparation. A second drawback of the method is the random 

barcoding strategy, which does not allow individual cell identities (marked by shape, size, 

lineage or location) to be associated with a given barcode.

Despite these limitations, the current method can provide important data addressing many 

biological problems. This is illustrated by the challenging problem of ES cell heterogeneity 

and its dynamics during early differentiation. ES cells are not divided into large sub-

populations of distinct cell types, and therefore analysis of their heterogeneity requires a 

sensitive method. Our analysis showed that, in the presence of serum and LIF, fluctuations 

in Oct4/Pou5f1 are decoupled from other pluripotency factors. We also found sub-

populations of Epiblast and PrEn lineages, and other less well characterized ES cell sub-

populations. This heterogeneity may reflect reversible fluctuations, or cells undergoing 

irreversible differentiation. The unbiased identification of small cell sub-populations 

requires the scale enabled by droplet methods.

Experimental Procedures

Microfluidic operation

The microfluidic device (80μm deep) was manufactured by soft lithography following 

standard protocols (Extended Methods). During operation, cells, RT/lysis mix and 

collection tubes were kept on ice. Flow rates were 100 μL/hr for cell suspension, 100 μL/hr 
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for RT/lysis mix, 10–20 μL/hr for BHMs and 90 μL/hr for carrier oil to produce 4 nL drops. 

BHMs were washed 3x and concentrated by centrifugation 2x at 5krcf, then loaded directly 

into tubing for injection into the device. Cells were loaded at 50k–100k/mL in 16%v/v 

Optiprep (Sigma), and maintained in suspension using a micro-stir bar placed in the syringe. 

The carrier oil was HFE-7500 fluorinated fluid (3M) with 0.75% (w/w) EA surfactant (RAN 

Biotechnologies). See Extended Methods for BHM synthesis, buffer compositions, 

equipment, and detailed microfluidic protocols.

Library preparation

After cell encapsulation primers were released by 8 min UV exposure (365 nm at ~10 

mW/cm2, UVP B-100 lamp) while on ice. The emulsion was incubated at 50°C for 2 hours, 

then 15 min at 70°C, then on ice. The emulsion was split into aliquots of 100–3500 cells, 

and demulsified by adding 0.2× 20% (v/v) perfluorooctanol, 80% (v/v) HFE-7500 and brief 

centrifugation. Broken droplets were stored at −20C and processed as per CEL-SEQ 

protocol, see Extended Methods.

Tissue culture

IB10 ES cells are a line derived from the mouse 129/Ola strain (subcloned from E14), 

kindly provided by Dr. Eva Thomas. Cells were maintained on flasks pre-coated with gelatin 

at density ~3×105 cells/mL. ES media contained phenol red free DMEM (Gibco), 15%v/v 

fetal bovine serum (Gibco), 2 mM L-glutamine, 1xMEM non-essential amino acids (Gibco), 

1%v/v penicillin-streptomycin antibiotics, 110μM β-mercaptoethanol, 100μM sodium 

pyruvate. ESC base media was supplemented with 1000 U/mL Leukemia Inhibitory Factor 

(LIF). See Extended Methods for dissociation protocol and K562 cell culture.

Data analysis

See Extended Methods for custom bioinformatics, count normalization, method sensitivity, 

identification of highly variable genes, PCA and tSNE, and network neighborhood analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A platform for DNA barcoding thousands of cells
Cells are encapsulated into droplets with lysis buffer, reverse-transcription mix, and 

hydrogel microspheres carrying barcoded primers. After encapsulation primers are released. 

cDNA in each droplet is tagged with a barcode during reverse transcription. Droplets are 

then broken and material from all cells is linearly amplified before sequencing. UMI = 

unique molecular identifier.

Klein et al. Page 17

Cell. Author manuscript; available in PMC 2016 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Barcoding hydrogel microsphere synthesis
A) Microfluidic preparation of hydrogel microspheres containing a common DNA. Scale 

bars 100 μm. B) The common DNA primer: acrylic phosphoroamidite moiety (blue), photo-

cleavable spacer (green), T7 RNA polymerase promoter sequence (red) and sequencing 

primer (blue). C,D) Method for combinatorial barcoding of the microspheres. E) The fully 

assembled primer: T7 promoter (red), sequencing primer (blue), barcodes (green), synthesis 

adaptor (dark brown), UMI (yellow) and poly-T primer (purple). See also Fig. S1.

Klein et al. Page 18

Cell. Author manuscript; available in PMC 2016 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. A droplet barcoding device
A) Microfluidic device design, see also Fig. S2. B,C) Snapshots of encapsulation (left) and 

collection (right) modules, see also Movies S1,S2. Arrows indicate cells (red), hydrogels 

(blue), and flow direction (black). Scale bars 100μm. D) Droplet occupancy over time. E) 

Cell and hydrogel co-encapsulation statistics showing a high 1:1 cell:hydrogel 

correspondence. F) BioAnalyzer traces showing dependence of library abundance on primer 

photo-release. H) Number of cells/controls as a function of collection volume.

Klein et al. Page 19

Cell. Author manuscript; available in PMC 2016 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Technical noise in droplet barcoding
A) Droplet integrity control: mouse and human cells are co-encapsulated to allow 

unambiguous identification of barcodes shared across multiple cells; 4% of barcodes share 

mixed mouse/human reads. B) inDrops technical control schematic, and histogram of UMI-

filtered mapped (UMIFM) reads per droplet. C) Unique gene symbols detected as a function 

of UMIFM reads per droplet. D) Mean UMIFM reads for spike-in molecules are linearly 

related to their input concentration, with a capture efficiency β=7.1%. E) Method sensitivity 

S as a function of input RNA abundance; red curve is the sensitivity limit of binomial 

sampling (S = 1 − e−βx). F) CV-mean plot of pure RNA after normalization. Data points 

correspond to individual gene symbols; solid curve is the binomial sampling noise limit. For 

abundant transcripts, droplet-to-droplet variability in method efficiency β sets a baseline CV 

(dashed curve: CVβ=5%), see also Fig. S3. G) Relationships between observed and 

biological values of gene CVs, Fano Factors and correlations, showing how low efficiency 

dampens Fano Factors (Eq. 2) and weakens correlations (Eq. 3).
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Figure 5. inDrop sequencing reveals ES cell population structure
A) CV-mean plot of the ES cell transcriptome. Pure RNA control (blue); genes significantly 

more variable than control (black). Solid and dashed curves are as in Fig. 4F [variability in 

cell size = 20%, see Theory Eq. (S4) in Supplemental Information]. Inset: gene CVs of two 

technical replicate cell populations (total n=5,956 cells), see also Fig. S4. B) Illustrative 

transcript counts showing low (Ttn), moderate (Trim28, Ly6a, Dppa5a) and high (Sparc, 

S100a6) expression variability; curve fits are Poisson (red) and Negative Binomial (blue) 

distributions. C) Above-Poisson (a.p.) noise, (CV2-1/mean) of pluripotency differentiation 

markers. D) Co-expression plots recapitulating known and novel gene expression 

relationships (see main text). E) The eigenvalue distribution of cell principal components 

(PC) reveals the number of non-trivial PCs detectable in the data (arrows), compared to 
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eigenvalue distribution of randomized data (black) and to the Marcenko-Pastur distribution 

for a random matrix (red). F) The first four ES cell PCs and their coefficients, revealing 

three outlier populations. G) ES cell tSNE map revealing an axis of pluripotency-to-

differentiation with fringe sub-populations at different points on the differentiation axis (see 

also Fig. S6). Top panel shows sub-populations visible in one projection. Lower panels 

show cells colored by abundance of specified gene sets (see Table S4).
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Figure 6. Regulatory information preserved in gene correlations
A) A strategy for inferring robust gene associations from cell-to-cell variability with weak 

and/or highly connected gene correlations, see also Fig. S6. B-D) Gene neighborhoods of 

Nanog, Sox2, and Cyclin B. Grey boxes mark validated pluripotency factors; blue boxes 

mark factors previously associated with a pluripotent state. E,F) Correlations of 44 cell 

cycle-regulated transcripts in a somatic cell line (K562) and in mouse ES cells shows a loss 

of cell cycle dependent transcription in ES cells (gene names in Fig. S6). Genes are ordered 

by hierarchical clustering. Color scale applies to (E,F).
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Figure 7. Heterogeneity in differentiating ES cells
A) Changes in global population structure after LIF withdrawal seen by hierarchically 

clustering cell-cell correlations over highly variable genes. B,C) Average (B) and 

distribution (C) of gene expression after LIF withdrawal; violin plots in (C) indicate the 

fraction of cells expressing a given number of counts; points show top 5% of cells. D,E) 

First two PCs of 3,034 cells showing asynchrony in differentiation. F) Epiblast and PrEn cell 

fractions as a function of time. G) tSNE maps of differentiating ES cells, and of genes (right 

panel) reveal putative population markers (see also Fig. S7 and Table S4). H) Intrinsic 

dimensionality of gene expression variability in ES cells and following LIF withdrawal, 

showing a smaller fluctuation sub-space during differentiation. The pure RNA control lacks 

correlations and displays a maximal fluctuation sub-space.
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